

Programming with

Python for Series 60 Platform

F O R U M N O K I A

Version 1.2; Septembe 8, 2005

Python for
Series 60 Platform

 r 2

Forum.Nokia.com

Copyright © 2005 Nokia Corporation. All rights reserved.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation. Java and all Java-based
marks are trademarks or registered trademarks of Sun Microsystems, Inc. Other product and company names
mentioned herein may be trademarks or trade names of their respective owners.

Disclaimer

The information in this document is provided "as is," with no warranties whatsoever, including any warranty of
merchantability, fitness for any particular purpose, or any warranty otherwise arising out of any proposal,
specification, or sample. Furthermore, information provided in this document is preliminary, and may be changed
substantially prior to final release. This document is provided for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to
implementation of information presented in this document. Nokia Corporation does not warrant or represent
that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this specification at any time, without notice.

License

A license is hereby granted to download and print a copy of this specification for personal use only. No other
license to any other intellectual property rights is granted herein.

 Programming with Python for Series 60 Platform 2

Forum.Nokia.com

Contents

1 Introduction.. 6
1.1 Scope ..6
1.2 Audience..6
1.3 New in Release 1.2...7
1.4 Typographical Conventions...7

2 The Hello World Application... 8
3 Using the Bluetooth Console .. 9

3.1 TCP/IP Console ..10
4 GUI Programming..11

4.1 First Example: Weather Maps ..11
4.2 Second Example: Weather Information...11
4.3 Application Skeleton ..14

5 Send SMS and Tabbed View ..16
6 Access to File System ..18

6.1 Example: File Browser..18
7 Logging ..19

7.1 A Logger Module..19
8 Bluetooth Sockets..22
9 Database Access and Form ..24
10 Contacts and Calendar Databases..29

10.1 Calendar Appointments...29
10.2 Contact Entries..30

11 Handling Key Bindings: RSS Reader ..31
12 Real-Time Graphics Support and Key Event Handling: ball.py...33

12.1 Drawing and Redrawing...33
12.2 Key Event Handling ...34
12.3 Main Loop...34

13 Python Execution Environment: default.py and Others ..36
14 Making Stand-Alone Applications from Python Scripts ...37
15 Porting Python Applications for PC to Series 60..39
16 Porting a Simple Extension to Series 60..40

16.1 Required Modifications to the Example Extension ..40
16.2 Installing the Example...40
16.3 Compiling the Example..41
16.4 Running the Example...41

17 Terms and Abbreviations ..42

 Programming with Python for Series 60 Platform 3

Forum.Nokia.com

18 References ...43
Appendix A Source Code for Weather Maps ...44
Appendix B Source Code for Weather Information..45
Appendix C Source Code for Application Skeleton ...47
Appendix D Source Code for SMS Sending...50
Appendix E Source Code for File Browser...53
Appendix F Source Code for Bluetooth Sockets ..55
Appendix G Source Code for Sports Diary ...56
Appendix H Source Code for RSS Reader ...60

H.1 rssreader.py...60
H.2 simplefeedparser.py...65

Appendix I Source Code for default.py ...67
Appendix J Source Code for Example Extension...69

J.1 elemlist.cpp ...69
J.2 bld.inf ..72
J.3 elemlist.mmp..72

Appendix K Contacts and Calendar Examples..74
K.1 Print Entries and Their Total Number in the Default Contacts Database............................74
K.2 Modifying a Contact..74
K.3 Using Calendar Entry’s Properties, etc. ...74
K.4 Todo Lists ...76

Appendix L Source Code for Ball ...77

 Programming with Python for Series 60 Platform 4

Forum.Nokia.com

Change History

December 10, 2004 Version 1.0 Initial document release.

June 29, 2005 Version 1.1.5 Sections 1.3, 10, 12, 16, Appendix J, Appendix K, and Appendix L
added. Sections 1, 4.2.1, 11, and 14 updated.

September 28, 2005 Version 1.2 Sections 1.3, 12, 13, 14 16.1, Appendix I, and Appendix L
updated.

 Programming with Python for Series 60 Platform 5

Forum.Nokia.com

1 Introduction

The Python for Series 60 Platform (Python for Series 60) execution environment simplifies application
development and provides a scripting solution for the Symbian C++ APIs. This document is for Python
for Series 60 release 1.2 that is based on Python 2.2.2.

The documentation for Python for Series 60 includes three documents:

• Getting Started with Python for Series 60 Platform [1] contains information on how to install
Python for Series 60 and how to write your first program

• Python for Series 60 Platform API Reference [2] contains API and other reference material

• This document contains code examples and programming patterns for Series 60 devices that can
be used as basis for programs. It is recommended that the sections in this document be read in
the order presented

Python for Series 60 as installed on a Series 60 device consists of:

• Python execution environment, which is visible in the application menu of the device and has
been written in Python on top of Python for Series 60 Platform (see Series 60 SDK Help
documentation [3])

• Python interpreter DLL

• Standard and proprietary Python library modules

• Series 60 UI application framework adaptation component (a DLL) that connects the scripting
domain components to Series 60 UI

• Python Installer program for installing Python files on the device, which consists of:

o Recognizer plug-in

o Symbian application written in Python

Tip: The Python for Series 60 developer discussion board [5] on the Forum Nokia Web site is a useful
resource for finding out information on specific topics concerning Python for Series 60. You are
welcome to give feedback or ask questions about Python for Series 60 through this discussion board.

1.1 Scope

This document includes practical examples on programming with Python for Series 60. The sample
programs can be used as a basis for the users' own programs.

1.2 Audience

This guide is intended for developers looking to create programs that use the native features and
resources of the Series 60 phones. The reader should be familiar with the Python programming
language (see http://www.python.org/) and the basics of using Python for Series 60 (see Getting Started
with Python for Series 60 Platform [1]).

 Programming with Python for Series 60 Platform 6

http://www.python.org/

Forum.Nokia.com

1.3 New in Release 1.2

This section lists the updates in this document since release 1.1.6.

• There are some general updates in Section 16.1, Required Modifications to the Example Extension.

• Chapters 12, Real-Time Graphics Support and Key Event Handling: ball.py, Appendix I, Source Code
for default.py, and Appendix L, Source Code for Ball contain some code updates.

• Chapter 14, Making Stand-Alone Applications from Python Scripts contains updated py2sis and
SVG icon information.

1.4 Typographical Conventions

The following typographical conventions are used in this document:

Bold Bold is used to indicate windows, views, pages and their
elements, menu items, and button names.

Italic Italics are used when referring to another chapter or section in
the document and when referring to a manual. Italics are also
used for key terms and emphasis.

Courier Courier is used to indicate parameters, file names, processes,
commands, directories, and source code text.

> Arrows are used to separate menu items within a path.

 Programming with Python for Series 60 Platform 7

Forum.Nokia.com

2 The Hello World Application

The shortest possible application written in Python prints "Hello" on the console. The application
hello.py consists of the line print "Hello" to produce the result displayed in Figure 1.

Figure 1: Hello

A graphical version of the Hello World application code has three lines and creates the output
displayed in Figure 2.

import appuifw
appuifw.app.title = u"Hello World"
appuifw.note(u"Hello World!", 'info')

Figure 2: Hello World!

The first line makes the application UI framework (appuifw) available to the script. The constant app
is predefined and it represents the application. It has a Unicode string attribute title that can be set
to change the title of the application. The attribute can be read and stored like any other variable:

old_title = appuifw.app.title
Import and run some other application here that changes the title
…
Restore the title
appuifw.app.title = old_title

The final statement appuifw.note(u"Hello World!", 'info') creates and displays a note
(see Figure 2). The text to be displayed must be Unicode because the Symbian platform uses Unicode,
but the note type is a plain string. The two other note types are error and conf.

 Programming with Python for Series 60 Platform 8

Forum.Nokia.com

3 Using the Bluetooth Console

Bluetooth console is a Python application that can be used as any Python application. Bluetooth
console is the easiest way to run Python on a phone, assuming that you have a Bluetooth connectivity
in your PC.

A listening Bluetooth RFCOMM serial port is required on your PC. Consult the documentation of your
Bluetooth device for instructions. You can use any VT100-compatible serial terminal software to
communicate with the phone. The standard Windows HyperTerminal is also adequate. Connect the
terminal emulator to the port assigned to the Bluetooth serial service.

Note that the Bluetooth console application accepts both CR and LF as a line termination character,
and that the CR-LF combination is interpreted as two line terminations. To verify that HyperTerminal
sends only CR and not CR-LF, check that the option File > Properties > Settings > ASCII Setup > Send
line ends with line feeds is not selected.

To start the Bluetooth console, choose Options > Run Script and start bt_console.py. When the
Bluetooth console starts for the first time, the phone searches for nearby Bluetooth devices and
prompts you to choose a device and a port on that device. An option allows you to save the device
address for later connection without performing the time-consuming device discovery process.

Note that the device discovery fails when there is a Bluetooth connection open. For example, this can
happen if you have just sent a file over a Bluetooth connection. To disconnect all Bluetooth
connections, disable and re-enable the Bluetooth connection from the phone. The discovery of devices
is the only operation that cannot be done when there is an open connection – connecting to a
previously discovered default host works even if there are other open connections.

Figure 3 contains sample Bluetooth console content from your PC. Everything that you type on the
console is sent to the phone and interpreted, and everything printed is sent back. For details of this
process, see Chapter 8, Bluetooth Sockets.

Figure 3: Bluetooth console

 Programming with Python for Series 60 Platform 9

Forum.Nokia.com

The scripts installed in the \system\apps\python\my directory are added to the command history
by default, so you can run them in the console with the Ctrl+p/Ctrl+n keys.

The default line editor is quite limited. If you have installed a more advanced line editor, such as the
Pyrepl library, you can start that from the command line.

Typing

import appuifw
appuifw.note(u"Hello", 'info')

has the same effect as the example in Figure 3: a note saying "Hello" is displayed on the phone.
print "Hello" prints "Hello" on the console. 2+2 evaluates a mathematical expression. The last
part of the example in the figure, starting with Traceback, shows a useful feature of the Bluetooth
console: all exception information is shown in the console. This is important when a running GUI
application covers the default text console of the phone.

One essential application that can be run over the console is the Python debugger pdb. This
application is not automatically installed (see Getting Started with Python for Series 60 Platform [1] for
more information). Figure 4 shows how pdb allows you to use single-step expressions (command s)
and query the values of variables (command p).

Figure 4: Python debugger

3.1 TCP/IP Console

If Bluetooth wireless technology is unavailable, you can also use the console over any TCP/IP transport
service your phone supports, such as GPRS, EDGE, or UMTS. To run the console over TCP/IP, first set up a
listening TCP port on a host the phone can access. For example, if you have the "Netcat" utility on a
Linux machine, you can use the following commands to receive the connection (replace 1025 with the
port you want to use):

 stty raw -echo; nc -l -p 1025; stty sane

Then you can run the console over TCP/IP with the following script in the device:

import btconsole
from socket import *
sock=socket(AF_INET,SOCK_STREAM)
sock.connect(("address of listening host",1025))
btconsole.run_with_redirected_io(sock,btconsole.interact,
 None, None, locals())
sock.close()

 Programming with Python for Series 60 Platform 10

Forum.Nokia.com

4 GUI Programming

This chapter introduces GUI programming with Python for Series 60. It starts with a simple example
application and finally presents a pattern for writing more complex GUI applications.

4.1 First Example: Weather Maps

Figure 5 displays a simple application with a graphical user interface.

Figure 5: Weather forecast

The application allows users to select what information to fetch, and displays that information with a
suitable application.

For the source code, see Appendix A, Source Code for Weather Maps.

The example is single-threaded and uses a dialog, which simplifies the application design.
Popup_menu returns the index if the users select a valid value, and None in other cases.

urllib is a standard library module that enables users to retrieve Web content based on URLs by
using the urlretrieve function. In this example, the image (PNG, GIF, or JPEG file) is stored in a
temporary file with the corresponding extension (.png, .gif, or .jpg). Note that the images may be
quite large and may therefore take up a large amount of memory. A content handler object displays
the content appropriately on the phone. If you modify the program by adding more content types, the
extensions can be any of those the phone recognizes.

The application outputs to the console and thus everything is printed on the default screen, which is
on the background of the application. In the example in Section 4.2, Second Example: Weather
Information, this limitation has been fixed. If there is an error in the application, the failure
information is directly visible. In other cases, it is recommended to redirect the error information to a
separate file. For more information, see Chapter 7, Logging.

4.2 Second Example: Weather Information

Figure 6 shows a more comprehensive example that creates a Listbox with three choices. Selection
of a choice starts the downloading of the appropriate file. The application indicates which file is being
retrieved. The Listbox contents are replaced by the text Please wait… for simplicity. After receiving
the information, the application shows it in a two-line popup_menu. The left softkey also works (see
the last image of Figure 6), but the selection of an option has not been implemented in this example.

 Programming with Python for Series 60 Platform 11

Forum.Nokia.com

Figure 6: Weather report

For the source code, see Appendix B, Source Code for Weather Information.

After the setup information, the find_value function is defined. It looks for the value between
<tag> and </tag> in text. This function always returns something: if a value does not exist, the
function returns an empty string.

A more robust and extensible way to implement this would be to use a parser that produces a SAX or
DOM tree. However, in this case a hand-written XML parser is adequate.

Four handlers are then defined: handle_selection is for handling the event of selecting an item in
Listbox. This is passed to the Listbox when it is created. The handle_add and handle_delete
functions are placeholders for the events of adding new locations and deleting existing ones. The last
handler is for the exit key.

The Listbox is first created and then set to be the application body. This makes it visible to the
users. Initially, the Listbox shows the airports of the three cities, but at the beginning of the
handle_selection function it is replaced by the text Please wait… The original text is restored at
the end of handle_selection.

Since Listbox is a UI control and not a dialog, creating a listbox does not cause the application to
wait for input. When the application is run from the Python execution environment (see Chapter 13,
Python Execution Environment: default.py and Others), this would cause the execution to fall back to the
execution environment implemented by the script default.py. For a solution to this problem and a
discussion on the difference between scripts installed as stand-alone applications and scripts run from
the Python execution environment, see Section 4.2.1, Active objects.

 Programming with Python for Series 60 Platform 12

Forum.Nokia.com

The following lines use urlretrieve to get a document and save it to a temporary file:

urllib.urlretrieve(weather_url, tempfile)
f = open(tempfile, 'r')
weatherinfo = file.read()
f.close()

This file is then opened, and read into weatherinfo.

The line weather = find_value(weatherinfo, "weather") reads weatherinfo, finds
<weather> and </weather>, and assigns the text between these to weather.

Note that all UI elements use Unicode as the default encoding. Therefore,

[(u"Weather", unicode(weather)), (u"Temperature",
unicode(temperature_string))]

is written as a list that is passed to the popup_menu. Since this is a list of pairs, the UI element is the
two-line pop-up menu.

One weakness of this sample application is that although the text in the Listbox changes, the
handler is not changed. Users might select the text Please wait…, and as a result, the program would
display the weather information for Los Angeles, which is not desired. A fix for this would be to use a
variable to keep track of the state of the Listbox, so that it could be known what the text was when
the users selected something. A better solution would be to use the bind method to reset the key
binding in the handler function as follows:

lb.bind(key_codes.EListboxEventEnterKeyPressed, None)

4.2.1 Active objects

Symbian threads and active objects work roughly as presented in Figure 7: each thread can contain a
number of active objects. Note that active objects are co-operative and non-preemptive. As a Python
programmer, you typically need to take care of active objects as they relate to UI programming, and
sockets as described in Section 4.3, Application Skeleton.

Active objectActive object

Active objectActive object

Active objectActive object

Active objectActive object Active objectActive object

Thread 1 Thread 2 Thread 3

Figure 7: Symbian threads and active objects

All Symbian applications have a single thread that takes care of user interaction. This is also the main
thread in Python applications, which allows you to directly call UI elements from Python. The
downside is that if the main thread is blocked, the UI is not updated. Although

 Programming with Python for Series 60 Platform 13

Forum.Nokia.com

import thread
l = thread.allocate_lock()

could be used, this would block the whole application. The e32.Ao_lock facility enables solving this
problem, as it allows active objects — in this case, the UI event handlers — to run while the
application waits in the lock.

An instance of e32.Ao_lock can be used to keep an application that is run from Python execution
environment script from falling back too early. This is achieved by creating a lock instance, setting
app.exit_key_handler to signal the lock, and then blocking in a wait for the lock. A setup like
this is not necessary for scripts installed as stand-alone applications as the application only exits when
the Exit key is pressed. For information on scripts installed as stand-alone applications, see Chapter 13,
Python Execution Environment: default.py and Others.

Warning: In non-trivial applications, it is almost always necessary to use an Ao_lock. Otherwise, an
UI application will exit before the user has a chance to see anything on the screen. Also, special care
must be taken to arrange the application logic in such a way that it is not possible to escape from the
application without signaling the eventual Ao_lock waiter. Otherwise, the active object-handling
framework gets into an erroneous state and may not function properly.

4.3 Application Skeleton

Figure 8 shows two collaborating threads, the other with active objects.

socket.listen()socket.listen()

Active objectActive object

Active objectActive object

Active objectActive object

UI

Figure 8: Two collaborating threads

In many Internet applications, users interact with an application that is also listening to a socket.
When the application receives new information from the Internet, it needs to update the interface
immediately. The thread listening to the socket cannot be allowed to update the UI, because this
would require careful coordination with the UI thread, and might crash the program. The
e32.is_ui_thread tells whether the current thread is handling the UI and whether it is safe to do
something with the program.

The sample application, which has been edited for clarity but is based on a real application, is the UI
for a to-do list on a network. When started, the application asks users to which server it should
connect. The application receives the task list from the network and allows the users to add and
delete tasks.

For the source code, see Appendix C, Source Code for Application Skeleton.

 Programming with Python for Series 60 Platform 14

Forum.Nokia.com

Starting from the bottom of the example, the Python idiom

if __name__ == "__main__":
 main()

has been used. This makes it possible to use the same program both as an application and as a library:
importing a program as a library in the interactive console facilitates debugging it.

There is also a function called main. It creates an instance of class MyApp and then enters its loop
method, which acts as the main event loop for the application. Finally, the close method of the
application is called to allow for cleanup. In this case, the close method clears the application menu,
body, and the exit key handler.

After the imports, the e32.ao_yield function makes sure that the UI is refreshed after the
potentially lengthy process of importing libraries. The operating system assumes that an application
that does not handle its UI events for a long time is broken, and tries to close it.

The constructor for the MyApp class creates a lock and an exit_flag variable that is initially set to
False. After this the constructor does some application-specific preparations.

The loop method implements the main loop. It first reserves the lock (which was free when created)
and then goes into a loop that is completed by changing the exit_flag variable to True. The
abort function is the only place where the exit flag is changed to True. When the exit flag changes,
the loop function returns and the close method is called in the main function.

The loop method calls the refresh method, waits on the lock, and repeats until told to stop. The
refresh method is the place to put the code that is needed for updating the UI after an event has
been processed.

When the database has been affected by any thread in this or some other application, the notify
method is called. Calls to this method are not shown in the example code. The notify method can
also be safely called from outside the UI thread because it only signals the internal lock. Other threads
can also change common data and call the notify method. When the MyApp execution reaches a
suitable point, the refresh function gets called, notices the new data, and updates the UI.

Methods handle_modify, handle_add, and handle_delete are for modifying, adding, and
deleting data in the database. Database information is stored in self.data so that it does not need
to be fetched from the database every time.

One optimization not implemented here would be to use a flag to keep track of whether anything has
changed in the user-visible view. If not, the refresh function does not need to be called and the
loop function can go directly back to wait.

For a practical example on this kind of application structure, see Chapter 11, Handling Key Bindings: RSS
Reader.

 Programming with Python for Series 60 Platform 15

Forum.Nokia.com

5 Send SMS and Tabbed View

This chapter presents a sample application for sending an SMS message and creating a tabbed view
application (see Figure 9).

For the source code, see Appendix D, Source Code for SMS Sending.

The sample application is a utility for sending SMS messages.

To send a message:

1. Select a recipient from a pre-defined list.

2. Select a stock message.

3. View the stock message.

4. Send the message.

Each action takes place in a separate tab view. Users are not allowed to edit the stock message. The
last tab is a log of all messages sent during the session.

Figure 9: SMS sending

The statement in the activate method of the SendView class

messaging.sms_send(nbr, txt)

sends the SMS.

 Programming with Python for Series 60 Platform 16

Forum.Nokia.com

The variable nbr is the phone number (an ASCII string) to which the SMS is sent, and the txt variable
is the text to be sent (Unicode). There is no automatic confirmation query, so you would need to write
one if desired.

The main application instantiates the SMS_multiviewApp object and calls its run method. This
method only initiates the tabbed view and then waits in an Ao_lock. The close method performs a
cleanup. The constructor for SMS_multiviewApp creates the different views in the tabbed view as
instances of different classes, and sets the tabs.

The handle_tabs method is called when the users change tabs with the navigation key. Note that
there are other ways to change the view (using activate_tab), but in those cases handle_tabs
needs to be explicitly called. The handle_tabs method calls the activate method of the
appropriate view instance.

The structure of the applications allows all view objects (NumbersView, ChoiceView, TextView,
and SendView) to know about the SMS_multiviewApp object and the SMS_multiviewApp to
know about all the view objects. When a view object needs to know something that is maintained by
another view, it asks the SMS_multiviewApp object. Therefore, the SMS_multiviewApp object
has the necessary methods for passing information.

Because all views have the same structure, a ChoiceView instance can serve as an example. It
presents the stock messages as a list. Since some messages may be too long to show on one line, the
next tab shows the full contents. When created, a ChoiceView instance registers the
SMS_multiviewApp object it was initialized with, creates the texts for display, and instantiates a
listbox.

When activated, a ChoiceView instance sets the body to be the Listbox and resets the menu
choices. Listbox and the Text UI control look different in tabbed view applications, as can be seen
in Figure 9: a Listbox leaves the tabs visible but a Text takes over the full screen. The events
generated by left and right arrow keys are always consumed by the main application, which moves
between views. This means that users cannot edit stock messages in this application because left and
right arrow keys are not available for this purpose.

The handle_select method has no real practical use and is included mainly as an illustration and
to provide comfort to the users. The get_text method fetches the text corresponding to the
selection. One option is always current in the Listbox; this can be specified in the constructor and is
the first one by default. If a user selects "Jane" from the list, moves to another view, and returns,
"Jane" is still selected.

The handle_send method takes care of the Send menu selection. The method moves directly to the
Send tab, which is a two-stage process: activate_tab(3) changes the view and selects the active
tab, but does not call any functions. The handle_tab(3) method is called from SMS_multiview.
SendView gets the selected text from ChoiceView by calling get_text from SMS_multiview,
which calls get_text from ChoiceView.

If you want to try the application yourself, add some phone numbers in NumbersView, uncomment
Import messaging, and uncomment messaging.sms_send in SendView. It is better to debug the
sample application when it does not send real SMS messages.

 Programming with Python for Series 60 Platform 17

Forum.Nokia.com

6 Access to File System

File system access with Python for Series 60 works the same way as in the Linux or Windows
operating systems. For example, the following line opens a file for reading:

 f = open("c:/temp/test.txt",'r')

In the mode field, 'r' is for reading, 'w' is for writing, 'a' is for appending, and 'r+' is for both reading
and writing.

Note that you can use forward slashes ("/") as file path separators. If you use backslashes ("\"), you
must write the line above as

 f = open("c:\\temp\\test.txt",'r')

The default "current working directory" in Python for Series 60 is the Z-drive, which is in ROM.
Therefore,

 f = open("test.txt",'w')

does not work since the system tries to store "test.txt" in read-only memory. Typically, the drive
letters refer to the following devices:

• 'C' is the built-in phone memory

• 'D' is a RAM disk

• 'E' is an extra memory card

• 'Z' is read-only ROM memory

6.1 Example: File Browser

Figure 10 shows the output of a simple File Browser application.

For the source code, see Appendix E, Source Code for File Browser.

The technique described in Section 4.2, Second Example: Weather Information has been used to
arrange a clean exit out of the script application in the script execution environment.

Figure 10: File browser

 Programming with Python for Series 60 Platform 18

Forum.Nokia.com

7 Logging

Python refers to file objects corresponding to the standard input, output, and error streams as stdin,
stdout, and stderr. These variables are in the sys module. Standard output captures all text that a
program prints, whereas standard error captures all error messages. The stdout and stderr
variables can be assigned to any objects that have a write method. For example, if you want your
program to write all error messages to a file called errormessages.txt in C drive, you can do the
following:

import sys
errorfile = open("c:/errormessages.txt", "w")
sys.stderr = errorfile
…
errorfile.close()

If you want, you can do a redirection temporarily and restore later:

import sys
errorfile = open("c:/errormessages.txt", "w")
old_stderr = sys.stderr
sys.stderr = errorfile
Some code here …
sys.stderr = old_stderr
errorfile.close()

If you want to run a test script while output is redirected to the Bluetooth console, use the
btconsole module functions. The btconsole.connect function connects to a Bluetooth serial
port and returns a socket that represents that connection. This is the same function the Bluetooth
console application uses for making connections, which means it supports preserving the default host.
The btconsole.run_with_redirected_io function inside the btconsole module redirects
the stdin, stdout, and stderr variables of a given function to a given socket. If run inside the UI
thread, the btconsole.run_with_redirected_io function also installs its own exit key
handler, which closes the socket if the Exit key is pressed. This can be used to abort execution of the
script in question.

For example (run this script with the Run script menu option, not from the Bluetooth console):

def print_stuff(message):
 print "Attention: %s"%message

print_stuff("This goes to the normal text console.")

import btconsole
sock=btconsole.connect() # Connect to a Bluetooth serial port
btconsole.run_with_redirected_io(sock,print_stuff,
 "This goes to the Bluetooth serial port.")
sock.close()

7.1 A Logger Module

It is customary for operating systems to cache writings to the file system. The flush method is used
to make sure that the file buffer is written to the disk. You can do the following in order to get
debugging information to a file even if the program you are debugging crashes the Python execution
environment:

import sys
debugfile = open("c:/system/debuginfo.txt","w")
sys.stdout = debugfile
Code…
This will now go to the file
print "Execution reached this far"

 Programming with Python for Series 60 Platform 19

Forum.Nokia.com

sys.stdout.flush()

On the last line, sys.stdout.flush calls debugfile.flush after the redirection. Conveniently,
sys.stdout.flush has also been defined for standard stdout, although it is practically empty.
This means that the lines that handle debugfile can be commented out.

However, even flush can fail to write bits to the hard drive. This may be the case if you are debugging
on the emulator and it crashes. The following code is the best way to make sure that everything has
been written to a file (it also works for stderr):

class Logger:
 def __init__(self, log_name):
 self.logfile = log_name

 def write(self, obj):
 log_file = open(self.logfile, 'a')
 log_file.write(obj)
 log_file.close()

 def writelines(self, obj):
 self.write(''.join(list))

 def flush(self):
 pass

To use this, create a file logger.py, insert the code above into it, install the file as a library module
(see Getting Started with Python for Series 60 Platform [1]), and do the following:

import sys
import logger
my_log = logger.Logger("c:/system/my_log.txt")
sys.stderr = sys.stdout = my_log
print "Testing logging"

On the last line, print Testing logging causes the write method of the Logger class to be called.
This opens the file c:/system/my_log.txt for appending, writes the text there, and then closes
the file.

A logger module could also contain the following convenience function – whose implementation
has been taken from the code module – for writing as much information about an exception trace as
possible.

Note: The logger module is not part of the Python for Series 60. You can use the module by copying
the code in this document.

def print_exception_trace(filename):
 import sys, traceback
 logfile=open(filename,'a')
 try:
 type, value, tb = sys.exc_info()
 sys.last_type = type
 sys.last_value = value
 sys.last_traceback = tb
 tblist = traceback.extract_tb(tb)
 del tblist[:1]
 list = traceback.format_list(tblist)
 if list:
 list.insert(0, "Traceback (most recent call last):\n")
 list[len(list):] = traceback.format_exception_only(type, value)
 finally:
 tblist = tb = None
 map(logfile.write, list)
 logfile.close()

 Programming with Python for Series 60 Platform 20

Forum.Nokia.com

The standard traceback module of the Python is applied to retrieve and format the information.
The map function on the last line calls logfile.write with all members of list.

To use this function, enclose your code in a try block and call print_exception_trace if
something goes wrong:

from logger import print_exception_trace
 try:
 # Suspicious code here
 …
 except:
 print_exception_trace("c:/errorlog.txt")

Even better, print_exception_trace could be made a method of the Logger class.

 Programming with Python for Series 60 Platform 21

Forum.Nokia.com

8 Bluetooth Sockets

Bluetooth sockets behave quite similarly to normal Internet sockets. The sample Bluetooth console
described in this chapter behaves quite like the built-in Bluetooth console. The idea of the console is
that everything that a user types at a remote console is transmitted to a Python instance running on
the phone, and all replies are sent back.

For the program code, see Appendix F, Source Code for Bluetooth Sockets.

class socket_stdio:
 def __init__(self,sock):
 self.socket=sock
 def read(self,n=1):
 return self.socket.recv(n)
 def write(self,str):
 return self.socket.send(str.replace('\n','\r\n'))
 def readline(self,n=None):
 buffer=[]
 while 1:
 ch=self.read(1)
 if ch == '\n' or ch == '\r': # return
 buffer.append('\n')
 self.write('\n')
 break
 if ch == '\177' or ch == '\010': # backspace
 self.write('\010 \010') # erase character
 # from the screen...
 del buffer[-1:] # ...and from the buffer
 else:
 self.write(ch)
 buffer.append(ch)
 if n and len(buffer)>=n:
 break
 return ''.join(buffer)
 def raw_input(self,prompt=""):
 self.write(prompt)
 return self.readline()
 def flush(self):
 pass

The functionality is provided by the socket_stdio class, which defines methods similar to the
standard input and output methods. Everything is read from a socket and written to a socket.

sock=socket.socket(socket.AF_BT,socket.SOCK_STREAM)
For quicker startup, enter here the address and port to connect to.
target='' #('00:20:e0:76:c3:52',1)
if not target:
 address,services=socket.bt_discover()
 print "Discovered: %s, %s"%(address,services)
 if len(services)>1:
 import appuifw
 choices=services.keys()
 choices.sort()
 choice=appuifw.popup_menu(
 [unicode(services[x])+": "+x for x in choices],
 u'Choose port:')
 target=(address,services[choices[choice]])
 else:
 target=(address,services.values()[0])
print "Connecting to "+str(target)

After the socket_stdio class is constructed, a socket is created. The default target illustrates the
format for Bluetooth addresses. If there is no default, the nearby Bluetooth devices have to be
discovered. The result of the discovery is a Bluetooth address — one which the users have selected

 Programming with Python for Series 60 Platform 22

Forum.Nokia.com

from a list of all visible Bluetooth devices — and a set of services which that Bluetooth device
supports. The program displays the service keys in a pop-up menu for the users to select the final
service from.

sock.connect(target)
socketio=socket_stdio(sock)
realio=(sys.stdout,sys.stdin,sys.stderr)
(sys.stdout.sys.stdin,sys.stderr)=(socketio,socketio,socketio)

The stdin and stdout variables can be connected and reconnected to the socket using the
socket_stdio adapter class.

import code
try:
 code.interact()
finally:
 (sys.stdout,sys.stdin,sys.stderr)=realio
 sock.close().

The code.interact function implements an interactive console using the current stdin, stdout,
and stderr variables. Python also uses the interact code function for the interactive console,
which causes the Bluetooth console to work mostly the same way as the native Windows Python
command line. An exception is the line editing functionality that is provided by the socket_stdio
class, which is different from the one in the Windows operating system. After the interpreter has
finished, the stdin, stdout, and stderr variables are returned to their original values and the
socket is closed.

 Programming with Python for Series 60 Platform 23

Forum.Nokia.com

9 Database Access and Form

Database access is possible using two modules: e32db and e32dbm. The e32dbm module provides
Python DBM functionality, which offers a persistent dictionary where both the keys and values are
Unicode strings. That makes it possible to create a persistent dictionary, such as a shelve in standard
Python library, using the marshal module to read and write Python values in a binary format.

For the source code, see Appendix G, Source Code for Sports Diary.

To see another example of e32db module, refer to the implementation of the e32dbm module that
uses the e32db module internally.

One benefit of using e32dbm is that it allows the reading and writing of native Symbian databases. If
you have several applications − some of which are written in C++ − that need to access the same
database, e32db is the best choice. Since e32dbm is easier to use, it is recommended for pure Python
development. The interface to an e32db instance is based on executing SQL statements.

Note: If you try this sample application, the database SportsDiary.db is created in the root folder
of the C drive in the device.

The sample application is a sports diary that enables users to keep track of their training. It allows
users to store the following information for an event:

• Date and time

• Length of the event in time (duration)

• Distance

• Sport (alternatives are running, skating, biking, skiing, and swimming)

• Free-text comment

It is assumed that users use the application right after they finish the sports training, so date and
time default to the current date and time.

The use of several different date and time formats in different parts of the system can be confusing. A
brief summary:

• Unix time is the number of seconds passed according to UTC (Coordinated Universal Time) since
January 1st 1970 00:00:00 UTC. This is the default time format for the Python for Series 60 API.

• The GUI form accepts date and time values in a format derived from Unix time (Figure 11). Date is
represented as the Unix time rounded down to the nearest local midnight, and time is
represented as the number of seconds passed since that midnight. Both values are floats. This
means that if you have a date field and a time field, you can form the Unix time they represent by
simply adding the values together.

• The e32db SQL statements represent date and time literals in the following format: #29.04.1979
04:01:02#. The order of fields in this format depends on the current date/time format settings in
use, and the SQL interpreter rejects all other formats. The e32db.format_time function can be
used to format date/time values according to the current settings.

• The Symbian native time format is a 64-bit number, which represents microseconds since
midnight of Jan 1st, 0 AD, nominal Gregorian, local time. This is the format also used internally in
the e32db database. Normally, there is no need to worry about this format, since the e32db API
uses Unix time by default, but in case you need it, there are also access functions for this format.

The sample application has three classes: SportsDiaryApp, SportsDiary, and
SportsDiaryEntry. An instance of SportsDiary provides functions to add and delete

 Programming with Python for Series 60 Platform 24

Forum.Nokia.com

SportsDiaryEntries. The SportsDiary class opens a native database when it is created, and it
has a close method for cleanup that closes the native database. If the application raises an
exception, the close method may not be called.

The get_all_entries method displays the first SQL statement and it also shows how to do
queries:

def get_all_entries(self):
 dbv = e32db.Db_view()
 dbv.prepare(self.native_db, u"SELECT * from events ORDER BY date
DESC")
 dbv.first_line()
 results = []
 for i in range(dbv.count_line()):
 dbv.get_line()
 e = SportsDiaryEntry(dbv)
 results.append(e)
 dbv.next_line()
 return results

In the method, dbv is a database view. It is first prepared with the parameters of the native database
and the SQL statement "SELECT * from events ORDER BY date DESC". The first_line
method returns the first line of the resulting query. In the sample application, a list of
SportsDiaryEntries is built by using the lines in the view.

All details about what is stored in the database are kept in the SportsDiaryEntry class. Therefore,
the add and delete methods call the sql_add and sql_delete methods of
SportsDiaryEntry.

SportsDiaryEntry starts by defining the sport. A more general application would not hard-code
these options, but would rather use a table in the database to maintain a list of possible sports.

sql_create is the SQL statement that creates a suitable table in the database. sql_create is
defined in the constructor of SportsDiary.

sql_create = u"CREATE TABLE events (date TIMESTAMP, duration FLOAT,
distance FLOAT, sport INTEGER, comment VARCHAR)"

Date and time are represented as one floating-point number date. Duration, which is the length of the
sports event in time, is also stored as a float, as is distance. The sport is stored as an integer, and the
comment is a VARCHAR.

Accessing information in a database view is illustrated in the constructor for SportsDiaryEntry:

self.timestamp = r.col(1)
self.duration = r.col(2)
self.distance = r.col(3)
self.sport = r.col(4)
self.comment = r.col(5)

The col function of the DB_view type knows how to convert the database data types into Python
types – see Python for Series 60 Platform API Reference [2] for details on how this is done. Since
duration has been defined in the database table as having the type float, self.duration is also a
float at the time when the constructor completes.

 Programming with Python for Series 60 Platform 25

Forum.Nokia.com

Figure 11 shows a sample sports diary entry.

Figure 11: Sports diary

The sql_add method constructs a suitable SQL statement to insert a SportsDiaryEntry instance
into the database.

def sql_add(self):
 sql = "INSERT INTO events (date, duration, distance, sport, comment)
VALUES (#%s#,%d,%d,%d,'%s')"%(
 e32db.format_time(self.timestamp),
 self.duration,
 self.distance,
 self.sport,
 self.comment)
 return unicode(sql)

Note: You must use single quotes (') around character strings in SQL statements.

The methods get_form and set_from_form deal with creating Series 60 forms. Forms are the
most powerful UI elements, and they usually work well with database applications. However, this
example concentrates only on formatting the data that the form uses.

def get_form(self):
 # Convert Unix timestamp into the form the form accepts.
 (yr, mo, da, h, m, s, wd, jd, ds) = \
 time.localtime(self.timestamp)
 m += 60*h # 60 minutes per hour
 s += 60*m # 60 seconds per minute
 result = [(u"Date", 'date', float(self.timestamp-s)),
 (u"Time", 'time', float(s)),
 (u"Duration", 'time', float(self.duration)),
 (u"Distance", 'number', int(self.distance))]
 if self.sport == None:
 result.append((u"Sport", 'combo', (self.sports, 0)))
 else:
 result.append((u"Sport", 'combo', (self.sports, self.sport)))
 result.append((u"Comment", 'text', self.comment))
 return result

Forms use lists as the data that they show, and after they return, their data can also be accessed as a
list. The list consists of entries of type

u" Label text", type, value

or, in case of selection from list (combo),

u"Label text", 'combo', (List of entries, initial choice).

 Programming with Python for Series 60 Platform 26

Forum.Nokia.com

For the date and time types, the value has to be a float. This can be ensured by casting the values.
Note that the phone number field type is applied for distance to restrict the entry to numbers only.
In this case, also a decimal point should be accepted, but the phone number field does not allow it
and a compromise has to be made by treating distance as an integer. Therefore, it is not possible to
enter decimal numbers, and distance is actually an integer. An alternative would be to use a text
field and then parse it as a float, but entering numbers in a text field is harder.

The sport entry in the form gives a list of sports as alternatives, and uses 'Running' as a default if the
sport has not been set to something else in this entry.

The set_from_form method is the inverse of get_form. It is used to parse the result after the
users have returned from the form. The data is in the same form as in get_form.

def set_from_form(self, form):
 self.timestamp = form[0][2]+form[1][2]
 self.duration = form[2][2]
 self.distance = form[3][2]
 self.sport = form[4][2][1]
 self.comment = form[5][2]

The form makes all the data available, since some of its variants allow the users to modify, for
instance, the labels. The first entry in the list form corresponds to the tuple

u"Date", 'date', <value>

The third element (index 2) is taken here since it contains the value.

All other cases are similar except for sport. The element in the list is now

 form[4] = u"Sport", 'combo', ([u"Running",…], <selection>)

Users' selection can be seen in Figure 12. The choice can be accessed by selecting the second element
of the third element: form[4][2][1].

Figure 12: Users' selection

 Programming with Python for Series 60 Platform 27

Forum.Nokia.com

The SportDiaryApp represents a relatively standard program. The interesting parts concern adding
and viewing entries. The implementation of the viewing functionality has been left as an exercise. The
first entry is viewed here since it is simpler. Note that this view can only be accessed with the
navigation key, not through the menu. The essential information is in the following method:

 def show_entry(self, entry):
 data = entry.get_form()
 flags = appuifw.FFormViewModeOnly
 f = appuifw.Form(data, flags)
 f.execute()

The entry is asked to get the suitable data for the form, as above. The flag this time is
FFormViewModeOnly, since the users should not edit the entry (of course, a way for the users to
edit the entries could also be added). The form is created and its execute method is called to make it
visible. When the users select Back, the form closes.

It is recommended that when a new entry is added, the database and the display be updated:

 def handle_add(self):
 new_entry = SportsDiaryEntry()
 data = new_entry.get_form()
 flags = appuifw.FFormEditModeOnly
 f = appuifw.Form(data, flags)
 f.execute()
 new_entry.set_from_form(f)
 self.sports_diary.add(new_entry)
 self.lock.signal()

This time, the flag is FFormEditModeOnly that allows for editing the form. After the execute
function returns, the form is updated with the new information that the users entered. Note that after
execute returns, the form is no longer visible but it still exists and can be passed to the
set_from_form method.

Now the set_from_form method is used to update the SportsDiaryEntry from the form. It is
then added to the sports diary and the main function is told that it is time to update the display (a
Listbox).

Finally, there is a little trick in handle_delete:

 def handle_delete(self):
 if self.entry_list:
 index = self.main_view.current()
 if appuifw.query(u"Delete entry?", 'query'):
 self.sports_diary.delete(self.entry_list[index])
 self.lock.signal()

Instead of blindly deleting the entry, the application asks the users for a confirmation. A query returns
True or False depending on what the users selected.

 Programming with Python for Series 60 Platform 28

Forum.Nokia.com

10 Contacts and Calendar Databases

Calendar databases, todo entries, and todo lists can be accessed from the calendar module.
Similarly, contact databases can be accessed from the contacts module. This chapter presents some
examples on handling calendar appointments and contact entries.

For more examples, see Appendix K, Contacts and Calendar Examples. Also, see Python for Series 60
Platform API Reference [2].

The source code for the examples in this chapter and Appendix K, Contacts and Calendar Examples can
be found in test_contacts.py and test_calendar.py.

10.1 Calendar Appointments

The following is an example of adding new, repeating calendar appointments into the calendar
database:

To open the calendar database, do as follows:

import time
import calendar
week = 7*24*60*60
day = 24*60*60
hour = 60*60
now=time.time() # now it is 20.june.2005

db = calendar.open()

To create an appointment, do as follows:

new_entry = db.add_appointment()
new_entry.set_time(now+2*week,now+2*week+hour)
new_entry.content='calendar test'
new_entry.location='somewhere'

To set the appointment to be repeated weekly for four weeks, do as follows:

repeat={"type":"weekly",
 "start":new_entry.start_time,
 "end":new_entry.start_time+4*week-day}
new_entry.set_repeat(repeat)

new_entry.commit()

 Programming with Python for Series 60 Platform 29

Forum.Nokia.com

Figure 13 shows how this looks in the native calendar application of your Nokia device.

Figure 13: An example view of the Calendar application

10.2 Contact Entries

The following is an example of adding a new contact entry:

import contacts

db = contacts.open()
contact = db.add_contact()
contact.add_field('first_name',value='John',label='Nickname')
contact.add_field('last_name','Doe')
contact.add_field('mobile_number','76476548')
contact.commit()

Figure 14 shows how this looks in the native Phonebook application of your Nokia device:

Figure 14: An example view of the Contacts application

For more examples, see Appendix K, Contacts and Calendar Examples. Also, see Python for Series 60
Platform API Reference [2].

 Programming with Python for Series 60 Platform 30

Forum.Nokia.com

11 Handling Key Bindings: RSS Reader

Figure 15 shows the RSS reader, which is a UI application that follows the structure introduced earlier
(see Section 4.3, Application Skeleton). RSS is a format for news feeds. The application uses key
bindings for moving between the different views of the application. Moving right in the feed menu
(first image of Figure 15) opens the articles in the selected feed in the article menu. Moving right from
the article menu opens the article view (third image).

Figure 15: RSS reader with the screen mode set to full in the last two screens

Only a few parts of the source code are described here in detail. For the full source code, see Appendix
H, Source Code for RSS Reader.

First of all, the program makes the application more responsive:

import thread
def import_modules():
 import simplefeedparser as feedparser
 import btconsole
thread.start_new_thread(import_modules,())

This imports modules in parallel in a separate thread, which works because all threads share a
common namespace. The obvious benefit for the users is that the application does not stall while it is
importing large libraries.

The key bindings are done as follows:

self.articlemenu=appuifw.Listbox([u''],self.handle_articlemenu_select)
self.articlemenu.bind(EKeyRightArrow,self.handle_articlemenu_select)
self.articlemenu.bind(EKeyLeftArrow,self.handle_exit)

The effect of pressing the right arrow (navigation key to the right) is the same as selecting an item,
whereas pressing the left arrow is the same as pressing the right softkey.

Another slow operation is fetching the RSS feeds using GPRS. To save time, the application caches the
articles in a DBM-type repository. This is done by opening a DBM store

cache=anydbm.open(u'c:\\rsscache','c')

and passing it to CachingRSSFeed constructor:

CachingRSSFeed(url='http://slashdot.org/index.rss',
 title='Slashdot',
 cache=cache)

 Programming with Python for Series 60 Platform 31

Forum.Nokia.com

All feeds are kept in the cache. The CachingRSSFeed registers a callback to invalidate the cache
when there is more recent information available. The cache is updated in the permanent memory
with

self.cache[self.url]=repr(self.feed)

in the save method of CachingRSSFeed.

To find out when a feed has updated itself, the RSSFeed class defines the listen method to allow
all interested listeners to register a callback function. The ReaderApp registers interest in all feeds
with

for k in self.feeds:
 k.listen(self.notify)

The notify method is in ReaderApp and refreshes the UI. The ReaderApp keeps track of its own
state with the state attribute and manages transitions between states according to the state map.

For example, if the users decide to update a feed, the process is as follows:

1. Selection of Update feed from a menu calls the handle_update method in ReaderApp.

2. The start_update method on the feed in question is called.

3. The start_update method first checks if an update is already ongoing, and if not, creates a
new thread that calls the internal _update method.

4. The _update method listens to the incoming information and parses it into intelligible form.
Information keeps coming and is parsed as it arrives.

5. When all information has been parsed, the _update method calls the notify_listeners
method that goes over the list of callbacks and makes sure they are called. Since the notify
method of ReaderApp has been registered, that method gets called.

6. As before, the notify method signals the lock where the main thread is waiting in the loop
method.

7. In the loop method, the main thread calls the refresh method before going back to wait on
the lock.

8. Finally, the refresh method updates the display.

The screen mode setting is created by using a submenu. Giving a list item to the menu list, in the
following format, creates the submenu:

(u'Screen mode', ((u'full', lambda:handle_screen('full')),
(u'large', lambda:handle_screen('large')),
(u'normal', lambda:handle_screen('normal')))),

where the function to set the screen mode is:

def handle_screen(mode):
 appuifw.app.screen = mode

Rich text appearance is set using Text object attributes as follows:

self.articleviewer.highlight_color = (255,240,80) #set yellow higlight
self.articleviewer.style =
appuifw.STYLE_UNDERLINE|appuifw.HIGHLIGHT_ROUNDED
set the text to be underlined and highlighted
with rounded style highlight
self.articleviewer.font = 'title'
#set the font to be the same as used in application titles in device
self.articleviewer.color = (0,0,255) #sets the font color to blue

 Programming with Python for Series 60 Platform 32

Forum.Nokia.com

12 Real-Time Graphics Support and Key Event Handling: ball.py

The current Python for Series 60 distribution includes two objects that can act as a target for graphics
drawing operations: Canvas and Image. Image represents an in-memory drawing surface, whereas
Canvas represents an actual drawing area on the screen. Image objects are often useful as
background buffers and temporary drawing surfaces.

Only a few parts of the source code are described here in detail. For the full source code, see Appendix
L, Source Code for Ball.

The ball.py example is a typical full-screen graphical application. At the beginning of the program
the screen layout is switched to the full mode and a Canvas object is created. The constructor
parameters of Canvas are callbacks for key and redraw events.

appuifw.app.screen='full'
img=None
def handle_redraw(rect):
 if img:
 canvas.blit(img)
appuifw.app.body=canvas=appuifw.Canvas(
 event_callback=keyboard.handle_event,
 redraw_callback=handle_redraw)
img=Image.new(canvas.size)

An exit key handler that exits the application gracefully is useful in most nontrivial Python for Series
60 applications:

running=1
def quit():

global running
running=0

appuifw.app.exit_key_handler=quit

12.1 Drawing and Redrawing

Each time you go through the application main loop, you need to clear the screen and draw all objects
on to the screen again. This could be done directly in Canvas, but that would lead to flickering, since
while the drawing is taking place the user would see a partially completed picture on the screen.
Therefore, you should use an Image object as a temporary buffer. The objects are first drawn onto
this Image object and its contents are then transferred to the screen with one blit operation. This
technique, known as double buffering, removes the flickering since half-finished drawings are never
seen on the screen.

This same Image object is also useful when redrawing the Canvas contents after something has
drawn over the Canvas. Whenever the UI framework detects that something has drawn onto the
space occupied by the Canvas, the redraw_callback given as the Canvas constructor parameter
is called. Redrawing is very simple when you have a backup Image:

def handle_redraw(rect):
 if img:
 canvas.blit(img)

Giving this redraw method to the Canvas is not strictly necessary here, since in this application the
screen is being completely redrawn frequently in any case.

 Programming with Python for Series 60 Platform 33

Forum.Nokia.com

12.2 Key Event Handling

The Canvas constructor parameter event_callback provides access to raw key events from the
keyboard. Whenever a key event occurs, the callback is called with the event as the parameter.

For this application, you need to be able to access the following information:

• Is a specific key currently pressed down? (For arrow keys)

• Has a specific key been pressed after the last time through the loop? (For the screen shot key)

To obtain this information, create a helper class that will keep track of which keys are currently down,
and how many times each key has been pressed:

class Keyboard(object):
def __init__(self,onevent=lambda:None):

self._keyboard_state={}
self._downs={}
self._onevent=onevent

def handle_event(self,event):
if event['type'] == appuifw.EEventKeyDown:

code=event['scancode']
if not self.is_down(code):

self._downs[code]=self._downs.get(code,0)+1
self._keyboard_state[code]=1

elif event['type'] == appuifw.EEventKeyUp:
self._keyboard_state[event['scancode']]=0

self._onevent()
def is_down(self,scancode):

return self._keyboard_state.get(scancode,0)
def pressed(self,scancode):

if self._downs.get(scancode,0):
self._downs[scancode]-=1
return True

return False
keyboard=Keyboard()

With this helper object, you can check, for example, whether the left arrow key is down by using
keyboard.is_down(EScancodeLeftArrow), or whether the Hash key has been pressed since
the last time of checking by using keyboard.pressed(EScancodeHash). The pressed method
returns True as exactly as many times as the key has been pressed.

12.3 Main Loop

Clear the backup buffer with black and draw each object onto it:

img.clear(0)
img.text((0,14),u'Use arrows to move ball',0xffffff)
img.point((location[0]+blobsize/2,location[1]+blobsize/2),

0x00ff00,width=blobsize)
handle_redraw(())

Draw the backup buffer onto the screen:

handle_redraw(())

Handle any pending events. Possible key callbacks also get called at this point:

e32.ao_yield()

 Programming with Python for Series 60 Platform 34

Forum.Nokia.com

If the Hash key has been pressed, save a screen shot to the memory card in PNG format. For simplicity,
the notification text is drawn directly on the Canvas instead of the backup bitmap:

if keyboard.pressed(EScancodeHash):
filename=u'e:\\screenshot.png'
canvas.text((0,32),u'Saving screenshot to:',fill=0xffff00)
canvas.text((0,48),filename,fill=0xffff00)
img.save(filename)

 Programming with Python for Series 60 Platform 35

Forum.Nokia.com

13 Python Execution Environment: default.py and Others

A script called default.py script implements most of the visible functionality of the Python
execution environment. The script is executed when the Python icon is selected on the main menu.
When users select Python, a little native (C++) launchpad application starts. It loads the Python
interpreter library, reads default.py, and runs it. If you want to modify the default behavior, edit
the default.py file. (The stand-alone Python applications are implemented in a similar manner. A
tool is available for creating stand-alone Python applications installable as SIS packages; see Chapter
14, Making Stand-Alone Applications from Python Scripts.)

For the source code of the standard default.py file, see Appendix I, Source Code for default.py.

The init_options_menu function sets the application menu contents. The query_and_exec
function creates a list of scripts in the script directory. To find out where it is running, it uses
app.full_name to find the full path name to the running application − that is, the location of
default.py. The path part is in the this_dir variable to be used by the query_and_exec
function. Scripts are in this_dir or in its subdirectory my. The script file is executed with the
standard execfile command.

The default display is the series60_console module that defines Console class. It creates a
Text UI control and defines clear, write, writelines, flush, and readline methods. It then
redirects stdin, stdout, and stderr to itself.

The benefit of this arrangement is that when a Python script for a console is running, it finds the
standard input and output redirected to a console that knows how to deal with them. Therefore, if the
script hello.py that contains the line

print "Hello"
is run, it prints the output to stdout, which is then redirected to the
write method of Console. In this way the print statement actually applies a UI control.

As discussed earlier, only the UI thread should do output to UI controls. If the print statement is called
from a non-UI thread, the output goes to a buffer. Otherwise, it is appended to the end of the buffer
and the buffer is output.

If the application redirects stdout, the output may never reach the series60_console.

The interactive console that is launched with exec_interactive uses series60_console as a
basis of its implementation. It adds menu items and binds the Enter key to a command. The actual
work in interactive console is done in the Python native code.interact function.

 Programming with Python for Series 60 Platform 36

Forum.Nokia.com

14 Making Stand-Alone Applications from Python Scripts

py2sis is a utility for packaging a Python script as a SIS file to be installed in the Symbian Series 60
1st and 2nd Edition devices. py2sis comes with the Python for Series 60 SDK installation package.
Python for Series 60 needs to be installed on the target device since the stand-alone applications
depend on it. Before packaging your script it is a standard procedure to verify that your script does not
contain defects, for example by running it successfully with the Python application.

Tip: For more useful information on py2sis, search the Python for Series 60 developer discussion
board with the key term "py2sis" [5].

Use the command line utility in the following way:

py2sis <src> [sisfile] [--uid=0x12345678] [--appname=myapp] [--presdk20]
[--leavetemp]

giving the path to the script or directory as <src> parameter. If you are packaging a whole directory,
the directory must contain a file named default.py which will be used as the main script. If the
directory from where py2sis is invoked contains a file named default.py, this file will be included
in the created package instead of the file given as the command line parameter. This directory can
also contain other files which your application needs, for example WAV files, PNG files, and an AIF file.
An AIF file contains icons for an application. These icons show in the device Menu and in the status
pane of your application. For generating AIF files, please refer to, for example, Series 60 SDK Help
documentation [3] using the key terms “How to compile an aif file”and “Introduction to AIF Builder”.

Note: In Series 60 2nd Edition FP3 and further releases, using SVG icons with py2sis is not
supported. However, it is possible to manually edit the created .pkg file to include resolution-
dependent icons. For more information on this, search Series 60 SDK 2nd Edition FP3 Help
documentation with the key term "Package file".

py2sis uses the command line tools from the Symbian SDK, so the SDK needs to be installed and
properly configured. This means that the makesis and uidcrc utilities need to be in your system
path. This can be verified by running makesis and uidcrc before invoking py2sis.

By default, the SIS file is created in the current working directory, but optionally you can specify the
path where you want to save the resulting SIS with the sisfile parameter.

Example: py2sis myscript.py c:\mysis.sis

All Symbian applications need to have an UID, which you can provide from the command line using
the --uid switch. The UID can also be embedded in the main script by including the line:

SYMBIAN_UID = 0x01234567

The UIDs must be assigned properly, and during development time you can use temporary UIDs from
the range of 0x01000000 to 0x0fffffff. For more information on UIDs, see Series 60 SDK Help
documentation [3] using the key terms “How to use UIDs”.

The name of the application is taken from the source name, but the name can also be specified using
the --appname switch.

If you are packaging a SIS file for a Series 60 1st Edition device, you must use switch --presdk20.

 Programming with Python for Series 60 Platform 37

Forum.Nokia.com

For investigating what was packaged into a SIS file, use switch --leavetemp1; this will not delete
the temporary directory temp/ used in the packaging process.

1 See also the unsis tool on the Symbian OS Tools Web page for unpacking the created SIS packages [4].

 Programming with Python for Series 60 Platform 38

Forum.Nokia.com

15 Porting Python Applications for PC to Series 60

Many Python applications made for PCs work without modification on Python for Series 60. The most
noticeable differences are in the UI and the availability of other capabilities. Here are some guidelines
if the application does not work as such:

• If the application depends on a Python module that is not installed on the phone, see if it is
possible to add the module. Modules often depend on other modules. The extension of the
module on the PC tells its type: .py extension means that the extension is written in Python, and
.pyd means that it is written in C.

• If the application depends on a Python extension written in C, the only alternative is to port the
module to Symbian. For some instructions on this, see Python for Series 60 Platform API Reference
[2]. Notice, however, that this requires familiarity with Symbian C++ programming.

While applications that use only the console functionality (writing and reading text) work as such on
Series 60, the screen may not be updated correctly when the application is computing without doing
OS calls. Running the computation in a separate thread or occasionally calling e32.ao_yield in the
main thread will give the system a chance to process UI events and prevent the UI from freezing.

See also Chapter 16, Porting a Simple Extension to Series 60.

 Programming with Python for Series 60 Platform 39

Forum.Nokia.com

16 Porting a Simple Extension to Series 60

Python for Series 60 supports the Python/C API for writing your own extension modules in C or C++.
There are some differences between Symbian OS and more commonly used operating systems that
require you to make a few changes to your extension module before it will work with Python for
Series 60.

This chapter guides you through the necessary steps for a simple extension elemlist, originally
written by Alex Martelli for the Python Cookbook. The extension implements a new type known as a
cons cell, which is similar to a two-element tuple and to the cons cells used in Lisp. The full source
code is listed in Appendix J, Source Code for Example Extension. For some more tips, see Appendices B
and C of the Python for Series 60 Platform API Reference [2].

16.1 Required Modifications to the Example Extension

Symbian OS does not support writable static data in DLLs, which means that all static variables must
be either converted into constants or moved to memory allocated from the heap. A common case
where this is needed is when you define a new type in your extension module and need to allocate a
type object for it. Python extensions for other platforms often simply define the type object as a static
struct and use it directly, but that approach does not work in Symbian.

In the example, cons_type has been converted into a constant const_type_template. In the
module initialization function, a new type object is allocated and the contents of
const_type_template are copied to it. A reference to the newly allocated type object is stored in
the module dictionary using an extension to the Python/C API, SPyAddGlobalString. To make it
easier to access this type object, a macro cons_type is defined that looks up the type object using
SPyGetGlobalString.

Depending on your SDK, you might also need to define the environment variable EPOCROOT to
EPOCROOT=\.

Since most Symbian APIs are based on C++, you typically need to compile all modules that access
Symbian APIs with a C++ compiler. This was also done in this example.

To make the extension compile, you need the build files bld.inf and elemlist.mmp. You should
be able to use the build files from this example, with minor modifications, to compile your own
extensions. For complete details on these build files, see Series 60 SDK Help documentation [3].

16.2 Installing the Example

1. Unpack the example code to the drive where you installed your Series 60 SDK, to a directory that is
on the same level as the epoc32 directory of the SDK. For example, if your epoc32 directory is
c:\symbian\7.0s\series60_v20\epoc32 unpack the code in
c:\symbian\7.0s\series60_v20\example.

2. Make sure you have defined a virtual drive that points to the directory that contains the epoc32
directory. For example, if your epoc32 directory is in c:\symbian\7.0s\series60_v20,
you can do this with the following command:
subst s: c:\symbian\7.0s\series60_v20

 Programming with Python for Series 60 Platform 40

Forum.Nokia.com

16.3 Compiling the Example

A script file build_all.cmd that does all of the necessary steps — and some extra cleanup, for
certainty — has been provided for convenience. You can either use that or perform the build manually
using these step-by-step instructions.

To perform the build manually:

1. Go to the example directory. Enter:
bldmake bldfiles

2. To build the extension:

o For the phone, enter:
abld build armi urel
abld freeze
abld build armi urel

o For the emulator environment, enter:
abld build wins udeb
abld freeze
abld build wins udeb

Note: The freeze step only needs to be performed once. After changing the code, only one abld
build armi urel, or abld build wins udeb, will rebuild the code properly.

3. To find the built module:

o For the phone build, you should find the built module in:
(path to your SDK)\epoc32\release\armi\urel\elemlist.pyd
Transfer the elemlist.pyd file to your phone in the \system\libs directory.

o For the emulator build, you should find the built module in:
(path to your
SDK)\epoc32\release\wins\udeb\z\system\libs\elemlist.pyd
It should be available to the emulator right away.

16.4 Running the Example

Start the interpreter and try the following code:
from elemlist import *
cell=cons(1,2)
car(cell)
cdr(cell)

The results of the last two commands should be 1 and 2 respectively.

 Programming with Python for Series 60 Platform 41

Forum.Nokia.com

17 Terms and Abbreviations

The following list defines the terms and abbreviations used in this document:

AIF An AIF file contains the caption, icon, capabilities, and MIME

priority support information for an application. Has the file
extension .aif.2

API Application Programming Interface

Bluetooth Bluetooth is a technology for wireless communication between
devices that is based on a low-cost short-range radio link.

DBM A set of database routines that uses extensible hashing. The dbm
module provides an interface to the Unix (n)dbm library.

Dialog A temporary user interface window for presenting context-
specific information to the user, or prompting for information in
a specific context.

Discovery Discovery is a process where Bluetooth wireless technology finds
other nearby Bluetooth devices and their advertised services.

DLL Dynamic link library

Navigation key A joystick-like directional input control key.

RSS A web content distribution and republication protocol.

SMS; Short Message System
(within GSM)

SMS is a service for sending messages of up to 160 characters
(224 characters if using a 5-bit mode) to mobile phones that use
GSM communication.

SIS Symbian installation file, produced by the installation file
generator or the SIS file creator. Python scripts can be packaged
into installation files using the py2sis tool.

Softkey Softkey is a key that does not have a fixed function or a function
label printed on it. On a phone, selection keys reside below or
above the screen, and derive their meaning from what is
presently on the screen.

SQL Structured Query Language

UI User Interface

UI control UI control is a GUI component supported by Series 60 that
enables user interaction and represents properties or operations
of an object.

UID; Unique Identifier A UID is a globally unique 32-bit number used in a compound
identifier to uniquely identify an object, file type, etc. When
users refer to "UID" they often mean UID3, the identifier for a
particular program.

2 Description based on information found in Series 60 SDK documentation [3].

 Programming with Python for Series 60 Platform 42

Forum.Nokia.com

18 References
1. Getting Started with Python for Series 60 Platform

 http://www.forum.nokia.com/

2. Python for Series 60 Platform API Reference

 http://www.forum.nokia.com/

3. Series 60 SDK Help documentation

4. Symbian OS Tools
http://www.symbian.com/developer/downloads/tools.html#unsis

5. Python for Series 60 developer discussion board
http://discussion.forum.nokia.com/

 Programming with Python for Series 60 Platform 43

http://www.forum.nokia.com/
http://www.forum.nokia.com/
http://discussion.forum.nokia.com/

Forum.Nokia.com

Appendix A Source Code for Weather Maps

Copyright (c) 2004 Nokia
Programming example -- see license agreement for additional rights
Simple GUI example

import socket
import urllib

import e32
import appuifw

List of triplets "Name", "URL", "extension"
choices=[(u"US Graphical Forecast",
"http://weather.gov/forecasts/graphical/images/thumbnail/Thumbnail_Wx4_c
onus.png", "png"),
 (u"US Radar Image",
"http://weather.gov/mdl/radar/rcm1pix_b.gif", "gif"),
 (u"US Satellite Image",
"http://weather.gov/satellite_images/national.jpg", "jpg")]
tempfile_without_extension = "c:\\weather"

old_title = appuifw.app.title
appuifw.app.title = u"Weather forecast"

L = [x[0] for x in choices]
index = appuifw.popup_menu(L, u"Select picture")

if index is not None:
 url = choices[index][1]
 ext = choices[index][2]
 tempfile = tempfile_without_extension + "." + ext

 try:
 print "Retrieving information..."
 urllib.urlretrieve(url, tempfile)
 lock=e32.Ao_lock()
 content_handler = appuifw.Content_handler(lock.signal)
 content_handler.open(tempfile)
 # Wait for the user to exit the image viewer.
 lock.wait()
 print "Image viewer finished."
 except IOError:
 print "Could not fetch the image."
 except:
 print "Could not open data received."

appuifw.app.title = old_title

 Programming with Python for Series 60 Platform 44

Forum.Nokia.com

Appendix B Source Code for Weather Information

Copyright (c) 2004 Nokia
Programming example -- see license agreement for additional rights
Simple GUI example 2

import socket
import urllib

import e32
import appuifw

choices =[(u"Los Angeles Intl Airport", "KLAX"),
 (u"Dallas/Fort Forth", "KDFW"),
 (u"New York/John F. Kennedy", "KJFK")]
choices_labels = [x[0] for x in choices]

weather_url_base = "http://weather.gov/data/current_obs/"
tempfile = "c:\\weather.xml"

def find_value(text, tag):
 "Find the value between <tag> and </tag> in text. Always returns a
string"
 begin_tag = "<" + tag + ">"
 begin = text.find(begin_tag)
 end = text.find("</" + tag + ">")
 if begin == -1 or end == -1:
 return ""
 begin += len(begin_tag)
 return text[begin:end]

def handle_selection():
 index = lb.current()
 code = choices[index][1]
 weather_url = weather_url_base + code + ".xml"
 lb.set_list([u"Please wait..."])
 appuifw.note(u"Fetching "+ weather_url, 'info')
 try:
 urllib.urlretrieve(weather_url, tempfile)
 f = open(tempfile, 'r')
 weatherinfo = f.read()
 f.close()
 weather = find_value(weatherinfo, "weather")
 temperature_string = find_value(weatherinfo,
 "temperature_string")
 appuifw.popup_menu([(u"Weather", unicode(weather)),
 (u"Temperature",
 unicode(temperature_string))],
 unicode(code))
 except IOError:
 appuifw.note(u"Connection error to server", 'error')
 except:
 appuifw.note(u"Could not fetch information", 'error')
 lb.set_list(choices_labels)

def handle_add():
 pass

def handle_delete():
 pass

def exit_key_handler():
 app_lock.signal()

lb = appuifw.Listbox(choices_labels, handle_selection)

old_title = appuifw.app.title

 Programming with Python for Series 60 Platform 45

Forum.Nokia.com

appuifw.app.title = u"Weather report"
appuifw.app.body = lb
appuifw.app.menu = [(u"Add new item", handle_add),
 (u"Delete item", handle_delete)]
appuifw.app.exit_key_handler = exit_key_handler

app_lock = e32.Ao_lock()
app_lock.wait()

appuifw.app.title = old_title

 Programming with Python for Series 60 Platform 46

Forum.Nokia.com

Appendix C Source Code for Application Skeleton

Copyright (c) Nokia 2004
Programming example -- see license agreement for additional rights
Advanced GUI example

This nonfunctional sample code is based on a simple application for
accessing a to-do list. The details of that particular application
have been edited out.

import e32
import appuifw

from MyDataAccess import MyDataAccess

e32.ao_yield()

def format(item):
 # Format the item as a short unicode string.
 return u"" # add your own code here

class MyApp:
 def __init__(self):
 self.lock = e32.Ao_lock()

 self.old_title = appuifw.app.title
 appuifw.app.title = u"My Application"

 self.exit_flag = False
 appuifw.app.exit_key_handler = self.abort

 self.data = []
 appuifw.app.body = appuifw.Listbox([u"Loading..."],
 self.handle_modify)

 self.menu_add = (u"Add", self.handle_add)
 self.menu_del = (u"Delete", self.handle_delete)
 appuifw.app.menu = []
 # First call to refresh() will fill in the menu.

 def connect(self, host):
 self.db = MyDataAccess(host)
 self.db.listen(self.notify)
 # Set up callback for change notifications.

 def loop(self):
 try:
 self.lock.wait()
 while not self.exit_flag:
 self.refresh()
 self.lock.wait()
 finally:
 self.db.close()

 def close(self):
 appuifw.app.menu = []
 appuifw.app.body = None
 appuifw.app.exit_key_handler = None
 appuifw.app.title = self.old_title

 def abort(self):
 # Exit-key handler.
 self.exit_flag = True
 self.lock.signal()

 def notify(self, in_sync):
 # Handler for database change notifications.

 Programming with Python for Series 60 Platform 47

Forum.Nokia.com

 if in_sync:
 self.lock.signal()

 def refresh(self):
 # Note selected item.
 current_item = self.get_current_item()

 # Get updated data.
 self.data = self.db.get_data()

 if not self.data:
 content = [u"(Empty)"]
 else:
 content = [format(item) for item in self.data]

 if current_item in self.data:
 # Update the displayed data,
 # retaining the previous selection.
 index = self.data.index(current_item)
 appuifw.app.body.set_list(content, index)
 else:
 # Previously selected item is no longer present, so allow
 # the selection to be reset.
 appuifw.app.body.set_list(content)

 if not self.data:
 appuifw.app.menu = [self.menu_add]
 else:
 appuifw.app.menu = [self.menu_add, self.menu_del]

 def handle_modify(self):
 item = self.get_current_item()
 if item is not None:
 # Display data in Form for user to edit.
 # Save modified record in database.
 pass # omitted

 def handle_add(self):
 new_item = self.edit_item(ToDoItem())
 if new_item is not None:
 # User enters new data into Form.
 # Save new record in database.
 pass # omitted

 def handle_delete(self):
 item = self.get_current_item()
 if item is not None:
 # Remove record from database.
 pass # omitted

 def get_current_item(self):
 # Return currently selected item, or None if the list is empty.
 if not self.data:
 return None
 else:
 current = appuifw.app.body.current()
 return self.data[current]

def main():
 app = MyApp()
 try:
 hosts = [u"some.foo.com", u"other.foo.com"]
 i = appuifw.popup_menu(hosts, u"Select server:")
 if i is not None:
 app.connect(hosts[i])
 app.loop()
 finally:
 app.close()

 Programming with Python for Series 60 Platform 48

Forum.Nokia.com

if __name__ == "__main__":
 main()

 Programming with Python for Series 60 Platform 49

Forum.Nokia.com

Appendix D Source Code for SMS Sending

Copyright (c) 2004 Nokia
Programming example -- see license agreement for additional rights
SMS sending example application

import appuifw
import e32
import messaging

old_title = appuifw.app.title
appuifw.app.title = u"SMS sending"

class NumbersView:
 def __init__(self, SMS_multiviewApp):
 self.SMS_multiviewApp = SMS_multiviewApp
 self.dict = [(u"Jim", "55512345"), (u"Jane", "55567890")]
 self.names = [item[0] for item in self.dict]
 self.numbers = [item[1] for item in self.dict]

 self.numbers_list = appuifw.Listbox(self.names,
self.handle_select)
 self.index = None
 appuifw.app.body = self.numbers_list

 def activate(self):
 appuifw.app.body = self.numbers_list
 appuifw.app.menu = [(u"Select", self.handle_select)]

 def handle_select(self):
 n = self.get_name()
 appuifw.note(u"Selected: "+ n, 'info')

 def get_current(self):
 return self.numbers_list.current()

 def get_name(self):
 i = self.get_current()
 return self.names[i]

 def get_number(self):
 i = self.get_current()
 return self.numbers[i]

class ChoiceView:
 def __init__(self, SMS_multiviewApp):
 self.SMS_multiviewApp = SMS_multiviewApp
 self.texts = [u"I am late",
 u"What is for dinner?",
 u"Do you need anything from the supermarket?",
 u"How about a round of golf after work?"]
 self.listbox = appuifw.Listbox(self.texts, self.handle_select)

 def activate(self):
 appuifw.app.body = self.listbox
 appuifw.app.menu = [(u"Select", self.handle_select),
 (u"Send", self.handle_send)]

 def handle_select(self):
 i = self.listbox.current()
 appuifw.note(u"Selected: " + self.get_text(),'info')

 def handle_send(self):
 appuifw.app.activate_tab(3)
 self.SMS_multiviewApp.handle_tab(3)

 Programming with Python for Series 60 Platform 50

Forum.Nokia.com

 def get_text(self):
 return self.texts[self.listbox.current()]

class TextView:
 def __init__(self, SMS_multiviewApp):
 self.SMS_multiviewApp = SMS_multiviewApp
 self.view_text = appuifw.Text()

 def activate(self):
 t = self.SMS_multiviewApp.get_text()
 self.view_text.set(t)
 appuifw.app.body = self.view_text
 appuifw.app.menu = [(u"Send", self.handle_send)]
 self.view_text.focus = True

 def handle_send(self):
 appuifw.app.activate_tab(3)
 self.SMS_multiviewApp.handle_tab(3)

class SendView:
 def __init__(self, SMS_multiviewApp):
 self.SMS_multiviewApp = SMS_multiviewApp
 self.log_text = appuifw.Text()
 self.log_contents = u""

 def activate(self):
 self.log_text.set(self.log_contents)
 appuifw.app.body = self.log_text
 appuifw.app.menu = []
 nbr = self.SMS_multiviewApp.get_number()
 txt = self.SMS_multiviewApp.get_text()
 nam = self.SMS_multiviewApp.get_name()
 if appuifw.query(u"Send message to " + nam + "?", 'query'):
 t = u"Sent " + txt + " to " + nbr + " (" + nam + ")\n"
 self.log_contents += t
 self.log_text.add(t)
 # messaging.sms_send(nbr, txt)

class SMS_multiviewApp:
 def __init__(self):
 self.lock = e32.Ao_lock()
 appuifw.app.exit_key_handler = self.exit_key_handler

 self.n_view = NumbersView(self)
 self.c_view = ChoiceView(self)
 self.t_view = TextView(self)
 self.s_view = SendView(self)
 self.views = [self.n_view, self.c_view, self.t_view,
self.s_view]
 appuifw.app.set_tabs([u"Numbers", u"Choice", u"Text", u"Send"],
 self.handle_tab)

 def run(self):
 self.handle_tab(0)
 self.lock.wait()
 self.close()

 def get_name(self):
 return self.n_view.get_name()

 def get_number(self):
 return self.n_view.get_number()

 def get_text(self):
 return self.c_view.get_text()

 Programming with Python for Series 60 Platform 51

Forum.Nokia.com

 def handle_tab(self, index):
 self.views[index].activate()

 def exit_key_handler(self):
 self.lock.signal()

 def close(self):
 appuifw.app.exit_key_handler = None
 appuifw.app.set_tabs([u"Back to normal"], lambda x: None)
 del self.t_view
 del self.s_view

myApp = SMS_multiviewApp()
myApp.run()

appuifw.app.title = old_title
appuifw.menu = None

 Programming with Python for Series 60 Platform 52

Forum.Nokia.com

Appendix E Source Code for File Browser

filebrowser.py

A very simple file browser script to demonstrate the power of Python
on Series 60.

Copyright (c) 2004 Nokia. All rights reserved.

import os
import appuifw
import e32
import dir_iter

class Filebrowser:
 def __init__(self):
 self.script_lock = e32.Ao_lock()
 self.dir_stack = []
 self.current_dir = dir_iter.Directory_iter(e32.drive_list())

 def run(self):
 from key_codes import EKeyLeftArrow
 entries = self.current_dir.list_repr()
 if not self.current_dir.at_root:
 entries.insert(0, (u"..", u""))
 self.lb = appuifw.Listbox(entries, self.lbox_observe)
 self.lb.bind(EKeyLeftArrow, lambda: self.lbox_observe(0))
 old_title = appuifw.app.title
 self.refresh()
 self.script_lock.wait()
 appuifw.app.title = old_title
 appuifw.app.body = None
 self.lb = None

 def refresh(self):
 appuifw.app.title = u"File browser"
 appuifw.app.menu = []
 appuifw.app.exit_key_handler = self.exit_key_handler
 appuifw.app.body = self.lb

 def do_exit(self):
 self.exit_key_handler()

 def exit_key_handler(self):
 appuifw.app.exit_key_handler = None
 self.script_lock.signal()

 def lbox_observe(self, ind = None):
 if not ind == None:
 index = ind
 else:
 index = self.lb.current()
 focused_item = 0

 if self.current_dir.at_root:
 self.dir_stack.append(index)
 self.current_dir.add(index)
 elif index == 0: # ".." selected
 focused_item = self.dir_stack.pop()
 self.current_dir.pop()
 elif os.path.isdir(self.current_dir.entry(index-1)):
 self.dir_stack.append(index)
 self.current_dir.add(index-1)
 else:
 item = self.current_dir.entry(index-1)

 Programming with Python for Series 60 Platform 53

Forum.Nokia.com

 if os.path.splitext(item)[1] == '.py':
 i = appuifw.popup_menu([u"execfile()", u"Delete"])
 else:
 i = appuifw.popup_menu([u"Open", u"Delete"])
 if i == 0:
 if os.path.splitext(item)[1].lower() == u'.py':
 execfile(item, globals())
 self.refresh()
 #appuifw.Content_handler().open_standalone(item)
 else:
 try:
 appuifw.Content_handler().open(item)
 except:
 import sys
 type, value = sys.exc_info() [:2]
 appuifw.note(unicode(str(type)+'\n'+str(value)),
 "info")
 return
 elif i == 1:
 os.remove(item)
 focused_item = index - 1

 entries = self.current_dir.list_repr()
 if not self.current_dir.at_root:
 entries.insert(0, (u"..", u""))
 self.lb.set_list(entries, focused_item)

if __name__ == '__main__':
 Filebrowser().run()

 Programming with Python for Series 60 Platform 54

Forum.Nokia.com

Appendix F Source Code for Bluetooth Sockets

Copyright (c) 2004 Nokia
Programming example -- see license agreement for additional rights
A simple interactive console over Bluetooth wireless technology.

import socket

class socket_stdio:
 def __init__(self,sock):
 self.socket=sock
 def read(self,n=1):
 return self.socket.recv(n)
 def write(self,str):
 return self.socket.send(str.replace('\n','\r\n'))
 def readline(self,n=None):
 buffer=[]
 while 1:
 ch=self.read(1)
 if ch == '\n' or ch == '\r': # return
 buffer.append('\n')
 self.write('\n')
 break
 if ch == '\177' or ch == '\010': # backspace
 self.write('\010 \010')
 # erase character from the screen
 del buffer[-1:] # and from the buffer
 else:
 self.write(ch)
 buffer.append(ch)
 if n and len(buffer)>=n:
 break
 return ''.join(buffer)
 def raw_input(self,prompt=""):
 self.write(prompt)
 return self.readline()
 def flush(self):
 pass

sock=socket.socket(socket.AF_BT,socket.SOCK_STREAM)
For quicker startup, enter here the address and port to connect to.
target='' #('00:20:e0:76:c3:52',1)
if not target:
 address,services=socket.bt_discover()
 print "Discovered: %s, %s"%(address,services)
 if len(services)>1:
 import appuifw
 choices=services.keys()
 choices.sort()
 choice=appuifw.popup_menu(
 [unicode(services[x])+": "+x for x in choices],
 u'Choose port:')
 target=(address,services[choices[choice]])
 else:
 target=(address,services.values()[0])
print "Connecting to "+str(target)
sock.connect(target)
socketio=socket_stdio(sock)
realio=(sys.stdout,sys.stdin,sys.stderr)
(sys.stdout,sys.stdin,sys.stderr)=(socketio,socketio,socketio)
import code
try:
 code.interact()
finally:
 (sys.stdout,sys.stdin,sys.stderr)=realio
 sock.close()

 Programming with Python for Series 60 Platform 55

Forum.Nokia.com

Appendix G Source Code for Sports Diary

Copyright (c) 2004 Nokia
Programming example -- see license agreement for additional rights
Database example application: a sports diary.

import time

import e32
import e32db
import appuifw

class SportsDiary:
 def __init__(self, db_name):
 try:
 self.native_db = e32db.Dbms()
 self.native_db.open(db_name)
 except:
 self.native_db.create(db_name)
 self.native_db.open(db_name)
 self.native_db.execute(SportsDiaryEntry.sql_create)

 def get_all_entries(self):
 dbv = e32db.Db_view()
 dbv.prepare(self.native_db,
 u"SELECT * from events ORDER BY date DESC")
 dbv.first_line()
 results = []
 for i in range(dbv.count_line()):
 dbv.get_line()
 e = SportsDiaryEntry(dbv)
 results.append(e)
 dbv.next_line()
 return results

 def add(self, e):
 self.native_db.execute(e.sql_add())

 def delete(self, e):
 self.native_db.execute(e.sql_delete())

 def close(self):
 self.native_db.close()

class SportsDiaryEntry:
 sports = [u"Running", u"Skating", u"Biking", u"Skiing", u"Swimming"]
 sql_create = u"CREATE TABLE events (date TIMESTAMP, duration FLOAT,
distance FLOAT, sport INTEGER, comment VARCHAR)"

 # Initialize with a row from Sport_diary_db
 def __init__(self, r=None):
 if r:
 self.timestamp = r.col(1)
 self.duration = r.col(2)
 self.distance = r.col(3)
 self.sport = r.col(4)
 self.comment = r.col(5)
 else:
 self.timestamp = time.time()
 self.duration = 0.0
 self.distance = 0.0
 self.sport = None
 self.comment = u""

 def sql_add(self):
 sql = "INSERT INTO events (date, duration, distance, sport,
comment) VALUES (#%s#,%d,%d,%d,'%s')"%(

 Programming with Python for Series 60 Platform 56

Forum.Nokia.com

 e32db.format_time(self.timestamp),
 self.duration,
 self.distance,
 self.sport,
 self.comment)
 return unicode(sql)

 def sql_delete(self):
 sql = "DELETE FROM events WHERE date=#%s#"%\
 e32db.format_time(self.timestamp)
 return unicode(sql)

 def unixtime(self):
 return self.timestamp

 def get_sport_text(self):
 return self.sports[self.sport]

 def get_form(self):
 # Convert Unix timestamp into the form the form accepts.
 (yr, mo, da, h, m, s, wd, jd, ds) = \
 time.localtime(self.timestamp)
 m += 60*h # 60 minutes per hour
 s += 60*m # 60 seconds per minute
 result = [(u"Date", 'date', float(self.timestamp-s)),
 (u"Time", 'time', float(s)),
 (u"Duration", 'time', float(self.duration)),
 (u"Distance", 'number', int(self.distance))]
 if self.sport == None:
 result.append((u"Sport", 'combo', (self.sports, 0)))
 else:
 result.append((u"Sport", 'combo', (self.sports,
 self.sport)))
 result.append((u"Comment", 'text', self.comment))
 return result

 def set_from_form(self, form):
 self.timestamp = form[0][2]+form[1][2]
 self.duration = form[2][2]
 self.distance = form[3][2]
 self.sport = form[4][2][1]
 self.comment = form[5][2]

class SportsDiaryApp:
 def __init__(self):
 self.lock = e32.Ao_lock()
 self.exit_flag = False
 appuifw.app.exit_key_handler = self.abort
 self.main_view = appuifw.Listbox([(u"Loading...", u"")],
 self.handle_view_entry)
 appuifw.app.body = self.main_view
 self.entry_list = []
 self.menu_add = (u"Add", self.handle_add)
 self.menu_summary = (u"Summary", self.handle_summary)
 self.menu_delete = (u"Delete", self.handle_delete)
 appuifw.app.menu = []

 def initialize_db(self, db_name):
 self.sports_diary = SportsDiary(db_name)

 def run(self):
 while not self.exit_flag:
 self.show_main_view()
 self.lock.wait()
 self.close()

 def close(self):
 appuifw.app.menu = []

 Programming with Python for Series 60 Platform 57

Forum.Nokia.com

 appuifw.app.body = None
 appuifw.app.exit_key_handler = None
 self.sports_diary.close()

 def abort(self):
 self.exit_flag = True
 self.lock.signal()

 def update_entry_list(self):
 self.entry_list = self.sports_diary.get_all_entries()

 def show_main_view(self):
 self.update_entry_list()
 if not self.entry_list:
 content = [(u"(Empty)", u"")]
 else:
 content = [(unicode(time.ctime(item.unixtime())),
 item.get_sport_text()) for item in
self.entry_list]

 self.main_view.set_list(content)

 if not self.entry_list:
 appuifw.app.menu = [self.menu_add]
 else:
 appuifw.app.menu = [self.menu_add,
 self.menu_delete,
 self.menu_summary]

 def handle_add(self):
 new_entry = SportsDiaryEntry()
 data = new_entry.get_form()
 flags = appuifw.FFormEditModeOnly
 f = appuifw.Form(data, flags)
 f.execute()
 new_entry.set_from_form(f)
 self.sports_diary.add(new_entry)
 self.lock.signal()

 def handle_delete(self):
 if self.entry_list:
 index = self.main_view.current()
 if appuifw.query(u"Delete entry?", 'query'):
 self.sports_diary.delete(self.entry_list[index])
 self.lock.signal()
 def handle_summary(self):
 sum = 0
 for e in self.entry_list:
 sum += e.distance
 appuifw.note(u"Total distance is "+str(sum), 'info')

 def handle_view_entry(self):
 if self.entry_list:
 index = self.main_view.current()
 self.show_entry(self.entry_list[index])
 self.lock.signal()

 def show_entry(self, entry):
 data = entry.get_form()
 flags = appuifw.FFormViewModeOnly
 f = appuifw.Form(data, flags)
 f.execute()

def main():
 app = SportsDiaryApp()
 app.initialize_db(u"c:\\SportsDiary.db")
 app.run()

if __name__ == '__main__':

 Programming with Python for Series 60 Platform 58

Forum.Nokia.com

 old_title = appuifw.app.title
 try:
 appuifw.app.title = u"Sports diary"
 e32.ao_yield()
 main()
 finally:
 appuifw.app.title = old_title

 Programming with Python for Series 60 Platform 59

Forum.Nokia.com

Appendix H Source Code for RSS Reader

This program consists of two separate source codes: rssreader.py and simplefeedparser.py.

H.1 rssreader.py

Copyright (c) 2005 Nokia
Programming example -- see license agreement for additional rights
A simple RSS reader application.

import anydbm

import e32
import appuifw
from key_codes import *

class RSSFeed:
 def __init__(self,url,title=None):
 self.url=url
 if title is None:
 title=url
 self.listeners=[]
 self.feed={'title': title,
 'entries': [],
 'busy': False}
 self.updating=False
 def listen(self,callback):
 self.listeners.append(callback)
 def _notify_listeners(self,*args):
 for x in self.listeners:
 x(*args)
 def start_update(self):
 if self.feed['busy']:
 appuifw.note(u'Update already in progress','info')
 return
 self.feed['busy']=True
 import thread
 thread.start_new_thread(self._update,())
 def _update(self):
 import dumbfeedparser as feedparser
 newfeed=feedparser.parse(self.url)
 self.feed.update(newfeed)
 self.feed['busy']=False
 self._notify_listeners()
 def __getitem__(self,key):
 return self.feed.__getitem__(key)

class CachingRSSFeed(RSSFeed):
 def __init__(self,cache,url,title=None):
 RSSFeed.__init__(self,url,title)
 self.cache=cache
 if cache.has_key(url):
 self.feed=eval(cache[url])
 self.dirty=False
 RSSFeed.listen(self,self._invalidate_cache)
 def _invalidate_cache(self):
 self.dirty=True
 # This method can't simply be a listener called by the RSSFeed,

 Programming with Python for Series 60 Platform 60

Forum.Nokia.com

 # since that call is done in a different thread and currently the
 # e32dbm module can only be used from the same thread it was
 # opened in.
 def save(self):
 if self.dirty:
 self.cache[self.url]=repr(self.feed)

def format_feed(feed):
 if feed['busy']:
 busyflag='(loading) '
 else:
 busyflag=''
 return unicode('%d: %s%s'%(len(feed['entries']),
 busyflag,
 feed['title']))

def handle_screen(mode):
 appuifw.app.screen = mode

class ReaderApp:
 def __init__(self,feedlist):
 self.lock=e32.Ao_lock()
 self.exit_flag=False
 self.old_exit_key_handler=appuifw.app.exit_key_handler
 self.old_app_body=appuifw.app.body
 appuifw.app.exit_key_handler=self.handle_exit
 self.feeds=feedlist
 self.articleviewer=appuifw.Text()
 self.feedmenu=appuifw.Listbox([u''],
 self.handle_feedmenu_select)
 self.articlemenu=appuifw.Listbox([u''],
 self.handle_articlemenu_select)
 screenmodemenu=(u'Screen mode',
 ((u'full', lambda:handle_screen('full')),
 (u'large', lambda:handle_screen('large')),
 (u'normal', lambda:handle_screen('normal'))))
 self.statemap={
 'feedmenu':
 {'menu':[(u'Update this feed', self.handle_update),
 (u'Update all feeds', self.handle_update_all),
 (u'Debug',self.handle_debug),
 screenmodemenu,
 (u'Exit',self.abort)],
 'exithandler': self.abort},
 'articlemenu':
 {'menu':[(u'Update this feed', self.handle_update),
 (u'Update all feeds', self.handle_update_all),
 screenmodemenu,
 (u'Exit',self.abort)],
 'exithandler':lambda:self.goto_state('feedmenu')},
 'articleview':
 {'menu':[(u'Next article',self.handle_next),
 (u'Previous article',self.handle_prev),
 screenmodemenu,
 (u'Exit',self.abort)],
 'exithandler':lambda:self.goto_state('articlemenu')}}
 self.articleviewer.bind(EKeyDownArrow,self.handle_downarrow)
 self.articleviewer.bind(EKeyUpArrow,self.handle_uparrow)
 self.articleviewer.bind(EKeyLeftArrow,self.handle_exit)

 Programming with Python for Series 60 Platform 61

Forum.Nokia.com

 self.articlemenu.bind(EKeyRightArrow,
 self.handle_articlemenu_select)
 self.articlemenu.bind(EKeyLeftArrow,self.handle_exit)
 self.feedmenu.bind(EKeyRightArrow,self.handle_feedmenu_select)
 for k in self.feeds:
 k.listen(self.notify)
 self.goto_state('feedmenu')
 def abort(self):
 self.exit_flag=True
 self.lock.signal()
 def close(self):
 appuifw.app.menu=[]
 appuifw.app.exit_key_handler=self.old_exit_key_handler
 appuifw.app.body=self.old_app_body
 def run(self):
 try:
 while not self.exit_flag:
 self.lock.wait()
 self.refresh()
 finally:
 self.close()
 def notify(self):
 self.lock.signal()
 def refresh(self):
 self.goto_state(self.state)
 def goto_state(self,newstate):
 # Workaround for a Series 60 bug: Prevent the cursor from
 # showing up if the articleviewer widget is not visible.
 self.articleviewer.focus=False
 if newstate=='feedmenu':
 self.feedmenu.set_list(
 [format_feed(x) for x in self.feeds])
 appuifw.app.body=self.feedmenu
 appuifw.app.title=u'RSS reader'
 elif newstate=='articlemenu':
 if len(self.current_feed['entries'])==0:
 if appuifw.query(u'Download articles now?','query'):
 self.handle_update()
 self.goto_state('feedmenu')
 return
 self.articlemenu.set_list(
 [self.format_article_title(x)
 for x in self.current_feed['entries']])
 appuifw.app.body=self.articlemenu
 appuifw.app.title=format_feed(self.current_feed)
 elif newstate=='articleview':
 self.articleviewer.clear()
 self.articleviewer.add(
 self.format_title_in_article(self.current_article()))
 self.articleviewer.add(
 self.format_article(self.current_article()))
 self.articleviewer.set_pos(0)
 appuifw.app.body=self.articleviewer
 appuifw.app.title=self.format_article_title(
 self.current_article())
 else:
 raise RuntimeError("Invalid state %s"%state)
 appuifw.app.menu=self.statemap[newstate]['menu']
 self.state=newstate
 def current_article(self):
 return self.current_feed['entries'][self.current_article_index]

 Programming with Python for Series 60 Platform 62

Forum.Nokia.com

 def handle_update(self):
 if self.state=='feedmenu':
 self.current_feed=self.feeds[self.feedmenu.current()]
 self.current_feed.start_update()
 self.refresh()
 def handle_update_all(self):
 for k in self.feeds:
 if not k['busy']:
 k.start_update()
 self.refresh()
 def handle_feedmenu_select(self):
 self.current_feed=self.feeds[self.feedmenu.current()]
 self.goto_state('articlemenu')
 def handle_articlemenu_select(self):
 self.current_article_index=self.articlemenu.current()
 self.goto_state('articleview')
 def handle_debug(self):
 import btconsole
 btconsole.run('Entering debug mode.',locals())
 def handle_next(self):
 if (self.current_article_index >=
 len(self.current_feed['entries'])-1):
 return
 self.current_article_index += 1
 self.refresh()
 def handle_prev(self):
 if self.current_article_index == 0:
 return
 self.current_article_index -= 1
 self.refresh()
 def handle_downarrow(self):
 article_length=self.articleviewer.len()
 cursor_pos=self.articleviewer.get_pos()
 if cursor_pos==article_length:
 self.handle_next()
 else:
 self.articleviewer.set_pos(min(cursor_pos+100,
 article_length))
 def handle_uparrow(self):
 cursor_pos=self.articleviewer.get_pos()
 if cursor_pos==0:
 self.handle_prev()
 self.articleviewer.set_pos(self.articleviewer.len())
 else:
 self.articleviewer.set_pos(max(cursor_pos-100,0))
 def format_title_in_article(self, article):
 self.articleviewer.highlight_color = (255,240,80)
 self.articleviewer.style = (appuifw.STYLE_UNDERLINE|
 appuifw.HIGHLIGHT_ROUNDED)
 self.articleviewer.font = 'title'
 self.articleviewer.color = (0,0,255)
 return unicode("%(title)s\n"%article)

 def format_article(self, article):
 self.articleviewer.highlight_color = (0,0,0)
 self.articleviewer.style = 0
 self.articleviewer.font = 'normal'
 self.articleviewer.color = (0,0,0)
 return unicode("%(summary)s"%article)

 def format_article_title(self, article):

 Programming with Python for Series 60 Platform 63

Forum.Nokia.com

 return unicode("%(title)s"%article)
 def handle_exit(self):
 self.statemap[self.state]['exithandler']()

class DummyFeed:
 def __init__(self,data): self.data=data
 def listen(self,callback): pass
 def start_update(self): pass
 def __getitem__(self,key): return self.data.__getitem__(key)
 def save(self): pass
dummyfeed=DummyFeed({'title': 'Dummy feed',
 'entries': [{'title':'Dummy story',
 'summary':'Blah blah blah.'},
 {'title':'Another dummy story',
 'summary':'Foo, bar and baz.'}],
 'busy': False})

def main():
 old_title=appuifw.app.title
 appuifw.app.title=u'RSS reader'
 cache=anydbm.open(u'c:\\rsscache','c')
 feeds=[CachingRSSFeed(url='http://slashdot.org/index.rss',
 title='Slashdot',
 cache=cache),

CachingRSSFeed(url='http://news.bbc.co.uk/rss/newsonline_world_edition/f
ront_page/rss091.xml',
 title='BBC',
 cache=cache),
 dummyfeed]
 app = ReaderApp(feeds)
 # Import heavyweight modules in the background to improve
application
 # startup time.
 def import_modules():
 import dumbfeedparser as feedparser
 import btconsole
 import thread
 thread.start_new_thread(import_modules,())
 try:
 app.run()
 finally:
 for feed in feeds:
 feed.save()
 cache.close()
 appuifw.app.title=old_title

if __name__=='__main__':
 main()

 Programming with Python for Series 60 Platform 64

Forum.Nokia.com

H.2 simplefeedparser.py

Copyright (c) 2004 Nokia
Programming example -- see license agreement for additional rights
A simple and limited RSS feed parser used in the RSS reader example.

import re
import urllib

def parse(url):
 return parse_feed(urllib.urlopen(url).read())

def parse_feed(text):
 feed={}
 items=[]
 currentitem=[{}]

 def clean_entities(text): return re.sub('&[#0-9a-z]+;','?',text)
 def clean_lf(text): return re.sub('[\n\t\r]',' ',text)

 def end_a(tag,content): write('LINK(%s)'%gettext())
 def start_item(tag,content):
 gettext()
 write(content)
 currentitem[0]={}
 def end_item(tag,content):
 items.append(currentitem[0])
 currentitem[0]={}
 def end_link(tag,content):
 if within('item'):
 currentitem[0]['link']=gettext()
 def end_description(tag,content):
 if within('item'):
 currentitem[0]['summary']=clean_entities(gettext())
 def end_title(tag,content):
 text=clean_lf(gettext()).strip()
 if within('item'):
 currentitem[0]['title']=text
 elif parentis('channel'):
 feed['title']=text

 tagre=re.compile('([^ \n\t]+)(.*)>(.*)',re.S)
 tagpath=[]
 textbuffer=[[]]
 assumed_encoding='latin-1'
 lines=text.split('<')
 def start_default(tag,content): write(content)
 def end_default(tag,content): pass
 def tag_default(tag,content): pass
 def write(text): textbuffer[0].append(text)
 def gettext():
 text=''.join(textbuffer[0])
 textbuffer[0]=[]
 return unicode(text,assumed_encoding)
 def current_tag(): return tagpath[-1]
 def current_path(): return '/'.join(tagpath)
 def within(tag): return tag in tagpath
 def parentis(tag): return current_tag()==tag
 for k in lines:
 m=tagre.match(k)
 if m:
 (tag,attributes,content)=m.groups()
 if tag.startswith('?'):
 continue
 if tag.startswith('/'):
 tagname=tag[1:]
 handler='end_%s'%tagname

 Programming with Python for Series 60 Platform 65

Forum.Nokia.com

 generic_handler=end_default
 if current_tag() != tagname:
 pass # Unbalanced tags, just ignore for now.
 del tagpath[-1]
 elif tag.endswith('/'):
 tagname=tag[0:-1]
 handler='tag_%s'%tagname
 generic_handler=tag_default
 else:
 tagname=tag
 handler='start_%s'%tagname
 generic_handler=start_default
 tagpath.append(tagname)
 locals().get(handler,generic_handler)(tagname,content)
 else:
 pass # Malformed line, just ignore.

 feed['entries']=items
 return feed

 Programming with Python for Series 60 Platform 66

Forum.Nokia.com

Appendix I Source Code for default.py

default.py

The default script run by the "Python" application in Series 60 Python
environment. Offers menu options for running scripts that are found in
application's directory, or in the \my -directory below it (this is
where the application manager copies the plain Python scripts sent to
device's inbox), as well as for launching interactive Python console.

Copyright (c) 2004 Nokia. All rights reserved.

import sys
import os
import appuifw
import series60_console

def query_and_exec():
 def is_py(x):
 return os.path.splitext(x)[1] == '.py'

 my_script_dir = os.path.join(this_dir,'my')
 script_list = []

 if os.path.exists(my_script_dir):
 script_list = map(lambda x: os.path.join('my',x),\
 filter(is_py, os.listdir(my_script_dir)))

 script_list += filter(is_py, os.listdir(this_dir))
 index = appuifw.selection_list(map(unicode, script_list))
 if index >= 0:
 execfile(os.path.join(this_dir, script_list[index]), globals())

def exec_interactive():
 import interactive_console
 interactive_console.Py_console(my_console).interactive_loop()

def exec_btconsole():
 import btconsole
 btconsole.main()

def menu_action(f):
 appuifw.app.menu = []
 saved_exit_key_handler = appuifw.app.exit_key_handler
 try:
 try:
 f()
 finally:
 appuifw.app.exit_key_handler = saved_exit_key_handler
 appuifw.app.title = u'Python'
 init_options_menu()
 appuifw.app.body = my_console.text
 appuifw.app.screen='normal'
 sys.stderr = sys.stdout = my_console
 except:
 import traceback
 traceback.print_exc()

def init_options_menu():
 appuifw.app.menu = [(u"Run script",\
 lambda: menu_action(query_and_exec)),
 (u"Interactive console",\
 lambda: menu_action(exec_interactive)),\
 (u"Bluetooth console",\
 lambda: menu_action(exec_btconsole)),\

 Programming with Python for Series 60 Platform 67

Forum.Nokia.com

 (u"About Python",\
 lambda: appuifw.note(u"See www.python.org for
more information.", "info"))]

this_dir = os.path.split(appuifw.app.full_name())[0]
my_console = series60_console.Console()
appuifw.app.body = my_console.text
sys.stderr = sys.stdout = my_console
#from e32 import _stdo
#_stdo(u'c:\\python_error.log') # low-level error output
init_options_menu()
print copyright

 Programming with Python for Series 60 Platform 68

Forum.Nokia.com

Appendix J Source Code for Example Extension

J.1 elemlist.cpp

/*
 Copyright (c) 2005 Nokia
 Programming example -- see license agreement for additional rights
 A simple extension used in the Porting an Extension example.
*/
/*
 This extension module implements a new native type, the "cons
 cell", that is very similar to the cons cells used in Lisp.

 This code illustrates some of the issues that arise when creating
 extensions for Python for Series 60. The code is derived from the
 example extension written by Alex Martelli for the Python
 Cookbook. The original code is licensed under the Python license,
 which is available at http://www.python.org/license.

 All parts that had to be modified from the original have
 been clearly marked. A summary of modifications:

 - Since Symbian DLLs do not (properly) support global writable
 data, the type object is allocated dynamically and filled in from a
 const template. Also, the function table for the module has been
 declared const.

 - The macro versions of memory allocation routines (PyObject_NEW,
 PyObject_DEL and others) are not supported in Python for Series 60
 1.0, so the non-macro versions, PyObject_New, PyObject_Del must be
 used instead.

 - The file has been compiled with the C++ compiler, to make it
 possible to include Symbian headers.
*/

#include "Python.h"

/***
 This include file declares the SPyGetGlobalString and
 SPySetGlobalString functions: */
#include "symbian_python_ext_util.h"
/* Standard Symbian definitions: */
#include <e32std.h>
/***/

/* type-definition & utility-macros */
typedef struct {
 PyObject_HEAD
 PyObject *car, *cdr;
} cons_cell;

/***
 Original definition:
 staticforward PyTypeObject cons_type;

 Symbian does not support writable global data in DLLs, so
 this type object has to be stored in another way. We
 choose to allocate it dynamically in the module init
 function and to bind it to a global name, so that we can
 access it with the SPyGetGlobalString function. For
 convenience, we define a macro that encapsulates the use
 of that function. Naming a macro in all lowercase
 violates the standard naming convention for macros, but
 allows you to keep the code that handles the type

 Programming with Python for Series 60 Platform 69

Forum.Nokia.com

 unchanged, which may be convenient if the same source
 code is used on multiple platforms. You will have to
 decide for yourself if this is too unsavory for your
 tastes. */
#define cons_type (*(PyTypeObject *)SPyGetGlobalString("consType"))
/***/

/* a typetesting macro (we do not use it here) */
#define is_cons(v) ((v)->ob_type == &cons_type)
/* macros to access car & cdr, both as lvalues & rvalues */
#define carof(v) (((cons_cell*)(v))->car)
#define cdrof(v) (((cons_cell*)(v))->cdr)

/* ctor (factory-function) and dtor */
static cons_cell*
cons_new(PyObject *car, PyObject *cdr)
{
 /***
 Original code:
 cons_cell *cons = PyObject_NEW(cons_cell, &cons_type);
 The macro versions of memory allocation routines
 (PyObject_NEW, PyObject_DEL and others) are not supported
 in Python for Series 60 1.0, so the non-macro versions,
 PyObject_New, PyObject_Del must be used instead.

 The Python documentation states that the use of these macros in
 extensions is bad practice in any case, since it ties the
 extension to the behaviour of the interpreter in unpredictable
 ways. */
 cons_cell *cons = PyObject_New(cons_cell, &cons_type);
 /***/
 if(cons) {
 cons->car = car; Py_INCREF(car); /* INCREF when holding a
PyObject* */
 cons->cdr = cdr; Py_INCREF(cdr); /* ditto */
 }
 return cons;
}
static void
cons_dealloc(cons_cell* cons)
{
 /* DECREF when releasing previously-held PyObject*'s */
 Py_DECREF(carof(cons)); Py_DECREF(cdrof(cons));
 /***
 Original code:
 PyObject_DEL(cons);
 See the note on PyObject_NEW.*/
 PyObject_Del(cons);
 /***/
}

/* Python type-object */

/***
 Original definition:
 statichere PyTypeObject cons_type = {

 As mentioned above, Symbian does not support _writable_
 global data in DLLs, so we store this partially
 initialized type object as constant data. In the module
 init function this is copied to a dynamically allocated,
 writable memory region. Note the name change to avoid
 clashing with the macro cons_type defined above. */
static const PyTypeObject cons_type_template = {
/***/
 PyObject_HEAD_INIT(0) /* initialize to 0 to ensure Win32
portability */
 0, /*ob_size*/

 Programming with Python for Series 60 Platform 70

Forum.Nokia.com

 "cons", /*tp_name*/
 sizeof(cons_cell), /*tp_basicsize*/
 0, /*tp_itemsize*/
 /* methods */
 (destructor)cons_dealloc, /*tp_dealloc*/
 /* implied by ISO C: all zeros thereafter */
};

/* module-functions */
static PyObject*
cons(PyObject *self, PyObject *args) /* the exposed factory-function
*/
{
 PyObject *car, *cdr;
 if(!PyArg_ParseTuple(args, "OO", &car, &cdr))
 return 0;
 return (PyObject*)cons_new(car, cdr);
}
static PyObject*
car(PyObject *self, PyObject *args) /* car-accessor */
{
 PyObject *cons;
 if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-
checked */
 return 0;
 return Py_BuildValue("O", carof(cons));
}
static PyObject*
cdr(PyObject *self, PyObject *args) /* cdr-accessor */
{
 PyObject *cons;
 if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-
checked */
 return 0;
 return Py_BuildValue("O", cdrof(cons));
}
/***
 Original definition:
 static PyMethodDef elemlist_methods[] = {

 Since no-one needs to write to this particular array,
 we can make the code work simply by adding "const".
 There is no need to copy the data. */
static const PyMethodDef elemlist_methods[] = {
/***/
 {"cons", cons, METH_VARARGS},
 {"car", car, METH_VARARGS},
 {"cdr", cdr, METH_VARARGS},
 {0, 0}
};

/* module entry-point (module-initialization) function */
/***
 Original definition:
 void initelemlist(void)

 We have to explicitly state that this function must be
 included in the public function list of the DLL. Symbian
 DLLs do not include names of the exported functions. The
 program that loads a DLL has to know the the index of the
 function in the function table, commonly known as the
 ordinal of the function, to call the functions in the
 DLL.

 The initialization function for a Python module _must_ be
 exported at ordinal 1. If the module exports just the
 initializer function, then there is nothing to worry
 about. If you also export a module finalizer function,
 you will have to make sure that the initializer is

 Programming with Python for Series 60 Platform 71

Forum.Nokia.com

 exported at ordinal 1 and the finalizer at ordinal 2.

 This module has just the initializer function.

 Also, the function has to be declared extern "C":*/
extern "C" {
DL_EXPORT(void) initelemlist(void)
/***/
{
 /* Create the module and add the functions */
 /***
 Original code:
 PyObject *m = Py_InitModule("elemlist", elemlist_methods);
 The Python/C API is unfortunately not quite const-correct, so
 we need to add a cast here to make the compiler happy:*/
 PyObject *m = Py_InitModule("elemlist",
(PyMethodDef*)elemlist_methods);
 /***/

 /* Finish initializing the type-objects */

 /***
 Allocate storage for the type object, fill it in
 from the constant template and bind it to a name in the
 module namespace: */
 PyTypeObject *consTypeObject=PyObject_New(PyTypeObject,
&PyType_Type);
 *consTypeObject=cons_type_template;
 SPyAddGlobalString("consType", (PyObject *)consTypeObject);
 /***/

 cons_type.ob_type = &PyType_Type;
}
}

/***
 This function is mandatory in Symbian DLL's. */

GLDEF_C TInt E32Dll(TDllReason)
{
 return KErrNone;
}
/***/

J.2 bld.inf

PRJ_PLATFORMS
wins winscw armi

PRJ_MMPFILES
elemlist.mmp

J.3 elemlist.mmp

TARGETTYPE dll
TARGET elemlist.pyd
TARGETPATH \system\libs

NOSTRICTDEF
DEFFILE elemlist.frz

SYSTEMINCLUDE \epoc32\include
SYSTEMINCLUDE \epoc32\include\libc

USERINCLUDE \python-port-s60\symbian_python\Symbian
USERINCLUDE \python-port-s60\symbian_python\Include

 Programming with Python for Series 60 Platform 72

Forum.Nokia.com

USERINCLUDE \python-port-s60\symbian_python\Python

LIBRARY python222.lib
LIBRARY euser.lib
LIBRARY estlib.lib /* Necessary only if you use the C standard library
*/

SOURCE elemlist.cpp

 Programming with Python for Series 60 Platform 73

Forum.Nokia.com

Appendix K Contacts and Calendar Examples

K.1 Print Entries and Their Total Number in the Default Contacts Database

db = contacts.open()
for entry_id in db:
 print db[entry_id]
print u'number of entries:%i'%len(db)

K.2 Modifying a Contact

open the database..
db = contacts.open()

add new contact
contact = db.add_contact()
contact.add_field('first_name', value=u'John')
contact.add_field('last_name', u'Doe')
contact.add_field('mobile_number','76476548','work')
contact.commit()

print u'the contact at first:%s'%contact

modify the contact
contact.find('first_name')[0].value='Henry'

print u'the contact now:%s'%contact

delete the first name field
del contact[contact.find('first_name')[0].index]

print u'and now:%s'%contact

delete the contact
del db[contact.id]

K.3 Using Calendar Entry’s Properties, etc.

db = calendar.open()

week = 7*24*60*60
hour = 60*60
minute = 60
now = time.time()

print u'entries in db:%i'%len(db)
print u'add an appointment..'
new_entry = db.add_appointment() # new appointment (note that at first
the autocommit is off and changes must be explisitly committed).
new_entry.set_time(now+week,now+week+hour)
new_entry.alarm=now+week-5*minute
new_entry.content=u'the meeting'
new_entry.location=u'conference room 01'
new_entry.replication="private"
new_entry.priority=1 # note that in sdk 1.2 only Todo’s have priority.
new_entry.commit() # commit because autocommit is off.
print u'entries in db now:%i'%len(db)
print u'**entry\'s data**'
print u'id:%i'%new_entry.id
print u'content:%s'%new_entry.content
print u'location:%s'%new_entry.location
print u'start_time:%s'%time.ctime(new_entry.start_time)
print u'end_time:%s'%time.ctime(new_entry.end_time)

 Programming with Python for Series 60 Platform 74

Forum.Nokia.com

print u'last modified:%s'%time.ctime(new_entry.last_modified)
print u'alarm datetime:%s'%time.ctime(new_entry.alarm)
print u'replication:%s'%new_entry.replication
print u'priority:%s'%new_entry.priority
print u'crossed out:%s'%new_entry.crossed_out
print u'--------'

to cross out the entry
new_entry.crossed_out=1 # note that autocommit is now on.
print "after crossing out:"
print u'crossed out:%s'%new_entry.crossed_out
print u'alarm:%s'%str(new_entry.alarm)
print ""

print u'delete the entry..'
del db[new_entry.id]
print u'entries in db now:%i'%len(db)
print ""

add todo entry
print u'add a todo..'
new_entry = db.add_todo() # new todo
new_entry.set_time(now+week)
new_entry.content=u'the things todo'
new_entry.location=u'work'
new_entry.replication="private"
new_entry.priority=2
new_entry.commit()

print u'entries in db now:%i'%len(db)
print u'**entry\'s data**'
print u'id:%i'%new_entry.id
print u'content:%s'%new_entry.content
print u'location:%s'%new_entry.location
print u'start_time:%s'%time.ctime(new_entry.start_time)
print u'end_time:%s'%time.ctime(new_entry.end_time)
print u'last modified:%s'%time.ctime(new_entry.last_modified)
print u'replication:%s'%new_entry.replication
print u'priority:%s'%new_entry.priority
print u'crossed out:%s'%new_entry.crossed_out
print u'--------'

to cross out the entry
new_entry.cross_out_time=time.time()
print "after crossing out:"
print u'crossed out:%s'%new_entry.crossed_out
print u'cross out time:%s'%time.ctime(new_entry.cross_out_time)
print ""

to make the todo entry undated.
print "after making undated:"
new_entry.set_time(None)
print u'start_time:%s'%new_entry.start_time
print u'end_time:%s'%new_entry.end_time

print u'to delete the entry..'
del db[new_entry.id]
print u'entries in db now:%i'%len(db)

 Programming with Python for Series 60 Platform 75

Forum.Nokia.com

K.4 Todo Lists

week = 7*24*60*60
db = calendar.open()

td=db.add_todo()
td.content=u'a test todo'
td.set_time(time.time(),time.time())
td.commit()

print "todo lists:"
for list_id in db.todo_lists:
 print "list id: %d"%list_id
 print "list name: %s"%db.todo_lists[list_id].name
 for entry_id in db.todo_lists[list_id]:
 print "todo (id) in the list: %d"%entry_id

print "default todo list: %d"%db.todo_lists.default_list

create new todo list
list_id = db.add_todo_list(u'new todo list')

print "new todo list name: %s"%db.todo_lists[list_id].name

rename it
db.todo_lists[list_id].name=u'renamed new todo list'

print "todo list name after renaming: %s"%db.todo_lists[list_id].name

remove the created todo list (note that all todo’s in the list are
also removed from the database)

del db.todo_lists[list_id]

 Programming with Python for Series 60 Platform 76

Forum.Nokia.com

Appendix L Source Code for Ball

ball.py
Copyright (c) 2005 Nokia. All rights reserved.
Programming example -- see license agreement for additional rights
A simple application used in the graphics support example.

import appuifw
from graphics import *
import e32
from key_codes import *

class Keyboard(object):
 def __init__(self,onevent=lambda:None):
 self._keyboard_state={}
 self._downs={}
 self._onevent=onevent
 def handle_event(self,event):
 if event['type'] == appuifw.EEventKeyDown:
 code=event['scancode']
 if not self.is_down(code):
 self._downs[code]=self._downs.get(code,0)+1
 self._keyboard_state[code]=1
 elif event['type'] == appuifw.EEventKeyUp:
 self._keyboard_state[event['scancode']]=0
 self._onevent()
 def is_down(self,scancode):
 return self._keyboard_state.get(scancode,0)
 def pressed(self,scancode):
 if self._downs.get(scancode,0):
 self._downs[scancode]-=1
 return True
 return False
keyboard=Keyboard()

appuifw.app.screen='full'
img=None
def handle_redraw(rect):
 if img:
 canvas.blit(img)
appuifw.app.body=canvas=appuifw.Canvas(
 event_callback=keyboard.handle_event,
 redraw_callback=handle_redraw)
img=Image.new(canvas.size)

running=1
def quit():
 global running
 running=0
appuifw.app.exit_key_handler=quit

location=[img.size[0]/2,img.size[1]/2]
speed=[0.,0.]
blobsize=16
xs,ys=img.size[0]-blobsize,img.size[1]-blobsize
gravity=0.03
acceleration=0.05

import time
start_time=time.clock()
n_frames=0
while running:
 img.clear(0)
 img.text((0,14),u'Use arrows to move ball',0xffffff)
 img.point((location[0]+blobsize/2,location[1]+blobsize/2),
 0x00ff00,width=blobsize)
 handle_redraw(())

 Programming with Python for Series 60 Platform 77

Forum.Nokia.com

 e32.ao_yield()
 speed[0]*=0.999
 speed[1]*=0.999
 speed[1]+=gravity
 location[0]+=speed[0]
 location[1]+=speed[1]
 if location[0]>xs:
 location[0]=xs-(location[0]-xs)
 speed[0]=-0.80*speed[0]
 speed[1]=0.90*speed[1]
 if location[0]<0:
 location[0]=-location[0]
 speed[0]=-0.80*speed[0]
 speed[1]=0.90*speed[1]
 if location[1]>ys:
 location[1]=ys-(location[1]-ys)
 speed[0]=0.90*speed[0]
 speed[1]=-0.80*speed[1]
 if location[1]<0:
 location[1]=-location[1]
 speed[0]=0.90*speed[0]
 speed[1]=-0.80*speed[1]

 if keyboard.is_down(EScancodeLeftArrow): speed[0] -= acceleration
 if keyboard.is_down(EScancodeRightArrow): speed[0] += acceleration
 if keyboard.is_down(EScancodeDownArrow): speed[1] += acceleration
 if keyboard.is_down(EScancodeUpArrow): speed[1] -= acceleration
 if keyboard.pressed(EScancodeHash):
 filename=u'e:\\screenshot.png'
 canvas.text((0,32),u'Saving screenshot to:',fill=0xffff00)
 canvas.text((0,48),filename,fill=0xffff00)
 img.save(filename)

 n_frames+=1
end_time=time.clock()
total=end_time-start_time

print "%d frames, %f seconds, %f FPS, %f ms/frame."%(n_frames,total,
 n_frames/total,
 total/n_frames*1000.)

 Programming with Python for Series 60 Platform 78

	Introduction
	Scope
	Audience
	New in Release 1.2
	Typographical Conventions

	The Hello World Application
	Using the Bluetooth Console
	TCP/IP Console

	GUI Programming
	First Example: Weather Maps
	Second Example: Weather Information
	Active objects

	Application Skeleton

	Send SMS and Tabbed View
	Access to File System
	Example: File Browser

	Logging
	A Logger Module

	Bluetooth Sockets
	Database Access and Form
	Contacts and Calendar Databases
	Calendar Appointments
	Contact Entries

	Handling Key Bindings: RSS Reader
	Real-Time Graphics Support and Key Event Handling: ball.py
	Drawing and Redrawing
	Key Event Handling
	Main Loop

	Python Execution Environment: default.py and Others
	Making Stand-Alone Applications from Python Scripts
	Porting Python Applications for PC to Series 60
	Porting a Simple Extension to Series 60
	Required Modifications to the Example Extension
	Installing the Example
	Compiling the Example
	Running the Example

	Terms and Abbreviations
	References

